Dual-role transcription factors stabilize intermediate expression levels
- PMID: 38631355
- DOI: 10.1016/j.cell.2024.03.023
Dual-role transcription factors stabilize intermediate expression levels
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Keywords: CRISPR gene modulation; biomolecular condensate; condensate occupancy sequencing; condensate selectivity; developmental program; dual transcriptional regulation; intrinsically disordered regions; noise reduction; primed expression; stablized expression variation.
Copyright © 2024 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests Y.L. and J.H. are co-inventors on provisional patent application no. 202310147061X filed by Tsinghua University entitled “Dual Transcription Factors, Transcriptional Modulation Systems, and Transcriptional Level Modulation Methods”.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous