Gene amplification: an example of accelerated evolution in tumorigenic cells
- PMID: 3863138
- PMCID: PMC391300
- DOI: 10.1073/pnas.82.20.7015
Gene amplification: an example of accelerated evolution in tumorigenic cells
Abstract
During selection for methotrexate resistance, tumorigenic CHEF/16 cells and derivatives from CHEF/16 tumors underwent amplification of the dihydrofolate reductase gene (DHFR) at accelerated rates compared with closely related nontumorigenic CHEF/18 cells. "Dot blot" analysis showed that the CHEF/16 cells contained many more copies of the DHFR gene than did the CHEF/18 cells, when assayed at similar elevated levels of methotrexate resistance. Chromosome analysis of cell samples taken at several time points during amplification revealed large differences between the nontumorigenic CHEF/18 cells and the two tumorigenic cell lines. The tumorigenic cells developed few chromosome rearrangements over a 4-log increase in methotrexate resistance, other than increased length of a single chromosome, which was shown by in situ hybridization to contain most or all of the amplified DHFR gene copies. In contrast, the CHEF/18 cells underwent complex, progressive changes in almost every chromosome, and in situ hybridization suggested a dispersed pattern of gene amplification. The data support the hypothesis that unregulated amplification is a pathological process, occurring readily in neoplastic but rarely in normal cells, that together with other chromosomal disturbances contributes to the rapid evolution and progression of cancer.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
