Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun;1871(5):119732.
doi: 10.1016/j.bbamcr.2024.119732. Epub 2024 Apr 15.

Fe/S proteins in microbial sulfur oxidation

Affiliations
Free article
Review

Fe/S proteins in microbial sulfur oxidation

Carolin Kümpel et al. Biochim Biophys Acta Mol Cell Res. 2024 Jun.
Free article

Abstract

Iron-sulfur clusters serve as indispensable cofactors within proteins across all three domains of life. Fe/S clusters emerged early during the evolution of life on our planet and the biogeochemical cycle of sulfur is one of the most ancient and important element cycles. It is therefore no surprise that Fe/S proteins have crucial roles in the multiple steps of microbial sulfur metabolism. During dissimilatory sulfur oxidation in prokaryotes, Fe/S proteins not only serve as electron carriers in several steps, but also perform catalytic roles, including unprecedented reactions. Two cytoplasmic enzyme systems that oxidize sulfane sulfur to sulfite are of particular interest in this context: The rDsr pathway employs the reverse acting dissimilatory sulfite reductase rDsrAB as its key enzyme, while the sHdr pathway utilizes polypeptides resembling the HdrA, HdrB and HdrC subunits of heterodisulfide reductase from methanogenic archaea. Both pathways involve components predicted to bind unusual noncubane Fe/S clusters acting as catalysts for the formation of disulfide or sulfite. Mapping of Fe/S cluster machineries on the sulfur-oxidizing prokaryote tree reveals that ISC, SUF, MIS and SMS are all sufficient to meet the Fe/S cluster maturation requirements for operation of the sHdr or rDsr pathways. The sHdr pathway is dependent on lipoate-binding proteins that are assembled by a novel pathway, involving two Radical SAM proteins, namely LipS1 and LipS2. These proteins coordinate sulfur-donating auxiliary Fe/S clusters in atypical patterns by three cysteines and one histidine and act as lipoyl synthases by jointly inserting two sulfur atoms to an octanoyl residue. This article is part of a Special Issue entitled: Biogenesis and Function of Fe/S proteins.

Keywords: Dissimilatory sulfur oxidation; Dsr system; Fe/S clusters; Lipoate assembly; Radical SAM proteins; Sulfur-oxidizing heterodisulfide reductase.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

MeSH terms

LinkOut - more resources