Quantum states resembling classical periodic trajectories in mesoscopic elliptic billiards
- PMID: 38632791
- DOI: 10.1103/PhysRevE.109.034205
Quantum states resembling classical periodic trajectories in mesoscopic elliptic billiards
Abstract
A quantum wave function with localization on classical periodic orbits in a mesoscopic elliptic billiard has been achieved by appropriately superposing nearly degenerate eigenstates expressed as products of Mathieu functions. We analyze and discuss the rotational and librational regimes of motion in the elliptic billiard. Simplified line equations corresponding to the classical trajectories can be extracted from the quantum state as an integral equation involving angular Mathieu functions. The phase factors appearing in the integrals are connected to the classical initial positions and velocity components. We analyze the probability current density, phase maps, and vortex distributions of the periodic orbit quantum states for both rotational and librational motions; furthermore, they may represent traveling and standing trajectories inside the elliptic billiard.
Similar articles
-
Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards.Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 2):046214. doi: 10.1103/PhysRevE.74.046214. Epub 2006 Oct 24. Phys Rev E Stat Nonlin Soft Matter Phys. 2006. PMID: 17155160
-
Elliptic billiard with harmonic potential: Classical description.Phys Rev E. 2023 Sep;108(3-1):034205. doi: 10.1103/PhysRevE.108.034205. Phys Rev E. 2023. PMID: 37849079
-
Localization of wave patterns on classical periodic orbits in a square billiard.Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046215. doi: 10.1103/PhysRevE.66.046215. Epub 2002 Oct 22. Phys Rev E Stat Nonlin Soft Matter Phys. 2002. PMID: 12443307
-
Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards.Phys Rev E. 2017 Feb;95(2-1):022214. doi: 10.1103/PhysRevE.95.022214. Epub 2017 Feb 21. Phys Rev E. 2017. PMID: 28297938
-
On the integrability of Birkhoff billiards.Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170419. doi: 10.1098/rsta.2017.0419. Philos Trans A Math Phys Eng Sci. 2018. PMID: 30224423 Review.