Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May:168:112097.
doi: 10.1016/j.jbiomech.2024.112097. Epub 2024 Apr 16.

Intersegmental coordination in human slip perturbation responses

Affiliations

Intersegmental coordination in human slip perturbation responses

Vaibhavsingh Varma et al. J Biomech. 2024 May.

Abstract

Intersegmental coordination (ISC) of lower limbs and planar covariation law (PCL) are important phenomena observed in biomechanics of human walking and other activities. Gait perturbations tend to cause deviation from the expected ISC pattern thus violating PCL. We used a data set of seven subjects, who experienced unexpected slips, to investigate and characterize the evolution of ISC during slip recoveries and falls. We have analyzed and presented the development of ISC patterns, encompassing the step preceding the slip initiation and duration of slip until it stops. The results show that the ISC patterns during slip recovery deviate considerably from the normal walking patterns. A newly proposed Euclidian distance-based metric (EDM) was used to quantify the deviation from the normal walking ISC pattern during four slip recoveries and three falls evaluated at gait events such as slip start, foot strike, and peak height of the swing foot. The timing of gait events after slip, pattern of EDM, placement of the feet after slip and temporal patterns of each limb angle have been presented. This initial investigation provides insight into the ISC during slip recovery which highlights the human natural recovery trajectories during such perturbations. The observed patterns of the ISC trajectories during slip can be used for the design of human-inspired controllers for exoskeleton devices that can provide external assistance to human subjects during balance recovery.

Keywords: Human locomotion; Intersegmental coordination; Limb elevation angles; Planar covariation law; Slip recovery.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.