Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov;26(11):1489-501.

Effects of long-term extended contact lens wear on the human cornea

  • PMID: 3863808

Effects of long-term extended contact lens wear on the human cornea

B A Holden et al. Invest Ophthalmol Vis Sci. 1985 Nov.

Abstract

The effects of long-term extended wear of soft contact lenses on the human cornea were determined by examining 27 patients who had worn a high water content hydrogel contact lens in 1 eye only for an average of 62 +/- 29 months (mean +/- SD). The other eye, which was either emmetropic or amblyopic, acted as a control. The lens-wearing eye showed a 14.8% reduction in epithelial oxygen uptake (P less than 0.001), a 5.6% reduction in epithelial thickness (P less than 0.05), a 2.3% reduction in stromal thickness (P less than 0.05), the induction of epithelial microcysts, and a 22.0% increase in endothelial polymegathism (P less than 0.001). Endothelial cell density was unaffected by extended lens wear. No interocular differences in any of these physiological characteristics were found in a matched control group of anisometropic and amblyopic subjects who did not wear contact lenses. The patients ceased lens wear for up to one month and recovery of corneal function was monitored during this period. Epithelial oxygen uptake and thickness recovered within 33 days of lens removal. The number of microcysts increased over the first 7 days, but decreased thereafter; some microcysts were still present 33 days after lens removal. Recovery from stromal thinning had not occurred after 33 days following lens removal. There was a slight reduction in polymegathism in some patients, but overall this was not statistically significant. These findings establish (1) that the extended wear of hydrogel lenses induces significant changes in all layers of the cornea; (2) that lens wear suppresses aerobic epithelial metabolism, which may compromise the epithelial barrier to infection; and (3) that changes to the stroma and endothelium are long-lasting. Lens-induced effects on corneal physiology can be minimized by fitting lenses that have greater oxygen transmissibility (are thinner), are more mobile, more frequently removed, and more regularly replaced.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources