Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:129:155633.
doi: 10.1016/j.phymed.2024.155633. Epub 2024 Apr 12.

Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection

Affiliations
Free article

Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection

Ji-Hye Song et al. Phytomedicine. 2024 Jul.
Free article

Abstract

Background: Doxorubicin (DOX) is an effective anticancer agent. However, the clinical outcomes of DOX-based therapies are severely hampered by their significant cardiotoxicity.

Purpose: We investigated the beneficial effects of an ethanol extract of Cirsium setidens (CSE) on DOX-induced cardiomyotoxicity (DICT).

Methods: UPLC-TQ/MS analysis was used to identify CSE metabolite profiles. H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells were used to evaluate the effects of CSE on DICT-induced cell death. To elucidate the mechanism underlying it, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma co-activator l-alpha (PGC1-α), nuclear respiratory factor 1 (NRF1), NRF2, superoxide dismutase (SOD1), and SOD2 expression was detected using western blot analysis. The oxygen consumption rate (OCR), cellular ROS, and mitochondrial membrane potential were measured. Finally, we confirmed the cardioprotective effect of CSE against DICT in both C57BL/6 mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) by observing various parameters, such as electrophysiological changes, cardiac fibrosis, and cardiac cell death.

Results: Chlorogenic acid and nicotiflorin were the major compounds in CSE. Our data demonstrated that CSE blocked DOX-induced cell death of H9c2 cells without hindrance of its apoptotic effects on MDA-MB-231 cells. DOX-induced defects of OCR and mitochondrial membrane potential were recovered in a CSE through upregulation of the AMPK-PGC1-α-NRF1 signaling pathway. CSE accelerated NRF1 translocation to the nucleus, increased SOD activity, and consequently blocked apoptosis in H9c2 cells. In mice treated with 400 mg/kg CSE for 4 weeks, electrocardiogram data, creatine kinase and lactate dehydrogenase levels in the serum, and cardiac fibrosis, were improved. Moreover, various electrophysiological features indicative of cardiac function were significantly enhanced following the CSE treatment of hiPSCCMs.

Conclusion: Our findings demonstrate CSE that ameliorates DICT by protecting mitochondrial dysfunction via the AMP- PGC1α-NRF1 axis, underscoring the therapeutic potential of CSE and its underlying molecular pathways, setting the stage for future investigations into its clinical applications.

Keywords: Cardiac functions; Cirsium setidens; Doxorubicin-induced cardiotoxicity; Human induced pluripotent stem cell; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources