Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;36(27):e2400763.
doi: 10.1002/adma.202400763. Epub 2024 May 1.

Knotted Artificial Muscles for Bio-Mimetic Actuation under Deepwater

Affiliations

Knotted Artificial Muscles for Bio-Mimetic Actuation under Deepwater

Wenhui Chen et al. Adv Mater. 2024 Jul.

Abstract

Muscles featuring high frequency and high stroke linear actuation are essential for animals to achieve superior maneuverability, agility, and environmental adaptability. Artificial muscles are yet to match their biological counterparts, due to inferior actuation speed, magnitude, mode, or adaptability. Inspired by the hierarchical structure of natural muscles, artificial muscles are created that are powerful, responsive, robust, and adaptable. The artificial muscles consist of knots braided from 3D printed liquid crystal elastomer fibers and thin heating threads. The unique hierarchical, braided knot structure offers amplified linear stroke, force rate, and damage-tolerance, as verified by both numerical simulations and experiments. In particular, the square knotted artificial muscle shows reliable cycles of actuation at 1Hz in 3000m depth underwater. Potential application is demonstrated by propelling a model boat. Looking ahead, the knotted artificial muscles can empower novel biomedical devices and soft robots to explore various environments, from inside human body to the mysterious deep sea.

Keywords: artificial muscles; deepwater application; knot structure; liquid crystal elastomer; soft actuator.

PubMed Disclaimer

References

    1. M. Shi, E. Yeatman, Microsyst. Nanoeng. 2021, 7, 95.
    1. J. Madden, N. Vandesteeg, P. Anquetil, P. Madden, A. Takshi, R. Pytel, S. Lafontaine, P. Wieringa, P. Wieringa, IEEE J. Ocean. Eng. 2004, 29, 706.
    1. M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides, D. Gonzalez, T. Akintilo, C. C. Tasan, A. P. Chandrakasan, Y. Fink, P. Anikeeva, Science 2019, 365, 145.
    1. M. D. Lima, N. Li, M. J. de Andrade, S. Fang, J. Oh, G. M. Spinks, M. E. Kozlov, C. S. Haines, D. Suh, J. Foroughi, S. J. Kim, Y. Chen, T. Ware, M. K. Shin, L. D. Machado, A. F. Fonseca, J. D. W. Madden, W. E. Voit, D. S. Galvão, R. H. Baughman, Science 2012, 338, 928.
    1. C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. W. Madden, S. H. Kim, S. Fang, M. J. de Andrade, F. Göktepe, Ö. Göktepe, S. M. Mirvakili, S. Naficy, X. Lepró, J. Oh, M. E. Kozlov, S. J. Kim, X. Xu, B. J. Swedlove, G. G. Wallace, R. H. Baughman, Science 2014, 343, 868.

LinkOut - more resources