Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:110:184-194.
doi: 10.1016/j.mri.2024.04.027. Epub 2024 Apr 19.

Rapid 2D 23Na MRI of the calf using a denoising convolutional neural network

Affiliations
Free article

Rapid 2D 23Na MRI of the calf using a denoising convolutional neural network

Rebecca R Baker et al. Magn Reson Imaging. 2024 Jul.
Free article

Abstract

Purpose: 23Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low 23Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been proposed to mitigate low signal-to-noise ratio (SNR); although, these can result in unnatural images, suboptimal denoising and long processing times. Recently, machine learning has been increasingly used to denoise 1H MRI acquisitions; however, this approach typically requires large volumes of high-quality training data, which is not readily available for 23Na MRI. Here, we propose using 1H data to train a denoising convolutional neural network (CNN), which we subsequently demonstrate on prospective 23Na images of the calf.

Methods: 1893 1H fat-saturated transverse slices of the knee from the open-source fastMRI dataset were used to train denoising CNNs for different levels of noise. Synthetic low SNR images were generated by adding gaussian noise to the high-quality 1H k-space data before reconstruction to create paired training data. For prospective testing, 23Na images of the calf were acquired in 10 healthy volunteers with a total of 150 averages over ten minutes, which were used as a reference throughout the study. From this data, images with fewer averages were retrospectively reconstructed using a non-uniform fast Fourier transform (NUFFT) as well as CS, with the NUFFT images subsequently denoised using the trained CNN.

Results: CNNs were successfully applied to 23Na images reconstructed with 50, 40 and 30 averages. Muscle and skin apparent TSC quantification from CNN-denoised images were equivalent to those from CS images, with <0.9 mM bias compared to reference values. Estimated SNR was significantly higher in CNN-denoised images compared to NUFFT, CS and reference images. Quantitative edge sharpness was equivalent for all images. For subjective image quality ranking, CNN-denoised images ranked equally best with reference images and significantly better than NUFFT and CS images.

Conclusion: Denoising CNNs trained on 1H data can be successfully applied to 23Na images of the calf; thus, allowing scan time to be reduced from ten minutes to two minutes with little impact on image quality or apparent TSC quantification accuracy.

Keywords: (23)Na MRI; Convolutional neural network; Denoising; Machine learning; Sodium; X-nuclei.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

Similar articles

Cited by

LinkOut - more resources