Differentiating viral and bacterial infections: A machine learning model based on routine blood test values
- PMID: 38644832
- PMCID: PMC11033127
- DOI: 10.1016/j.heliyon.2024.e29372
Differentiating viral and bacterial infections: A machine learning model based on routine blood test values
Abstract
The growing threat of antibiotic resistance necessitates accurate differentiation between bacterial and viral infections for proper antibiotic administration. In this study, a Virus vs. Bacteria machine learning model was developed to distinguish between these infection types using 16 routine blood test results, C-reactive protein concentration (CRP), biological sex, and age. With a dataset of 44,120 cases from a single medical center, the model achieved an accuracy of 82.2 %, a sensitivity of 79.7 %, a specificity of 84.5 %, a Brier score of 0.129, and an area under the ROC curve (AUC) of 0.905, outperforming a CRP-based decision rule. Notably, the machine learning model enhanced accuracy within the CRP range of 10-40 mg/L, a range where CRP alone is less informative. These results highlight the advantage of integrating multiple blood parameters in diagnostics. The "Virus vs. Bacteria" model paves the way for advanced diagnostic tools, leveraging machine learning to optimize infection management.
© 2024 The Authors.
Conflict of interest statement
Marko Notar is the CEO of Smart Blood Analytics SA. Mateja Notar, Sašo Moškon, Tim Smole, Žiga Osterc, Marjeta Tušek Jelenc and Manca Köster hold positions at Smart Blood Analytics Swiss SA. Matjaž Kukar, Peter Černelč, and Gregor Gunčar serve as advisors to Smart Blood Analytics Swiss SA. The remaining authors declare no competing interests.
Figures








References
-
- Laxminarayan R., Duse A., Wattal C., Zaidi A.K.M., Wertheim H.F.L., Sumpradit N., Vlieghe E., Hara G.L., Gould I.M., Goossens H., Greko C., So A.D., Bigdeli M., Tomson G., Woodhouse W., Ombaka E., Peralta A.Q., Qamar F.N., Mir F., Kariuki S., Bhutta Z.A., Coates A., Bergstrom R., Wright G.D., Brown E.D., Cars O. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 2013;13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. - DOI - PubMed
-
- WHO . 2015. Global Action Plan on Antimicrobial Resistance.
-
- Chan Y.-L., Liao H.-C., Tsay P.-K., Chang S.-S., Chen J.-C., Liaw S.-J. C-reactive protein as an indicator of bacterial infection of adult patients in the emergency department. Chang Gung Med. J. 2002;25:437–445. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous