Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Apr 12:2024.04.12.589144.
doi: 10.1101/2024.04.12.589144.

Essential and virulence-related protein interactions of pathogens revealed through deep learning

Essential and virulence-related protein interactions of pathogens revealed through deep learning

Ian R Humphreys et al. bioRxiv. .

Update in

  • Protein interactions in human pathogens revealed through deep learning.
    Humphreys IR, Zhang J, Baek M, Wang Y, Krishnakumar A, Pei J, Anishchenko I, Tower CA, Jackson BA, Warrier T, Hung DT, Peterson SB, Mougous JD, Cong Q, Baker D. Humphreys IR, et al. Nat Microbiol. 2024 Oct;9(10):2642-2652. doi: 10.1038/s41564-024-01791-x. Epub 2024 Sep 18. Nat Microbiol. 2024. PMID: 39294458 Free PMC article.

Abstract

Identification of bacterial protein-protein interactions and predicting the structures of the complexes could aid in the understanding of pathogenicity mechanisms and developing treatments for infectious diseases. Here, we developed a deep learning-based pipeline that leverages residue-residue coevolution and protein structure prediction to systematically identify and structurally characterize protein-protein interactions at the proteome-wide scale. Using this pipeline, we searched through 78 million pairs of proteins across 19 human bacterial pathogens and identified 1923 confidently predicted complexes involving essential genes and 256 involving virulence factors. Many of these complexes were not previously known; we experimentally tested 12 such predictions, and half of them were validated. The predicted interactions span core metabolic and virulence pathways ranging from post-transcriptional modification to acid neutralization to outer membrane machinery and should contribute to our understanding of the biology of these important pathogens and the design of drugs to combat them.

PubMed Disclaimer

Publication types

LinkOut - more resources