Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep;71(9):2749-2758.
doi: 10.1109/TBME.2024.3392333. Epub 2024 Aug 21.

MRI Accurately Visualizes RF Ablation Delivery Targeted to MRI-Defined Arrhythmia Substrates in the Left Ventricle

MRI Accurately Visualizes RF Ablation Delivery Targeted to MRI-Defined Arrhythmia Substrates in the Left Ventricle

Philippa R P Krahn et al. IEEE Trans Biomed Eng. 2024 Sep.

Abstract

Objective: Investigate the capacity of MRI to evaluate efficacy of radiofrequency (RF) ablations delivered to MRI-defined arrhythmogenic substrates.

Methods: Baseline MRI was performed at 3 T including 3D LGE in a swine model of chronic myocardial infarct (N = 8). MRI-derived maps of scar and heterogeneous tissue channels (HTCs) were generated using ADAS 3D. Animals underwent electroanatomic mapping and ablation of the left ventricle in CARTO3, guided by MRI-derived scar maps. Post-ablation MRI (in vivo at 3 T in 5/8 animals; ex vivo at 1.5 T in 3/8) included 3D native T1-weighted IR-SPGR (TI = 700-800 ms) to visualize RF lesions. T1-derived RF lesions were compared against excised tissue. The locations of T1-derived RF lesions were compared against CARTO ablation tags, and segment-wise sensitivity and specificity of lesion detection were calculated within the AHA 17-segment model.

Results: RF lesions were clearly visualized in HTCs, scar, and myocardium. Ablation patterns delivered in CARTO matched T1-derived RF lesion patterns with high sensitivity (88.9%) and specificity (94.7%), and were closely matched in registered MR-EP data sets, with a displacement of 5.4 ±3.8 mm (N = 152 ablation tags).

Conclusion: Integrating MRI into ablative procedures for RF lesion assessment is feasible. Patterns of RF lesions created using a standard 3D EAM system are accurately reflected by MRI visualization in healthy myocardium, scar, and HTCs comprising the MRI-defined arrhythmia substrate.

Significance: MRI visualization of RF lesions can provide near-immediate ( 24 h) assessment of ablation, potentially indicating whether critical MRI-defined ventricular tachycardia substrates have been adequately ablated.

PubMed Disclaimer

References

Publication types

MeSH terms