Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 1;210(9):1091-1100.
doi: 10.1164/rccm.202312-2270OC.

Exhaled Volatile Organic Compounds for Asthma Control Classification in Children with Moderate to Severe Asthma: Results from the SysPharmPediA Study

Collaborators, Affiliations

Exhaled Volatile Organic Compounds for Asthma Control Classification in Children with Moderate to Severe Asthma: Results from the SysPharmPediA Study

Shahriyar Shahbazi Khamas et al. Am J Respir Crit Care Med. .

Abstract

Rationale: The early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. Objectives: To assess the accuracy of gas chromatography-mass spectrometry-based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. Methods: This study encompassed discovery (SysPharmPediA [Systems Pharmacology Approach to Uncontrolled Paediatric Asthma]) and validation (U-BIOPRED [Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes] and PANDA [Paediatric-Asthma-Non-Invasive-Diagnostic-Approaches]) phases. First, exhaled VOCs that discriminated degrees of asthma control were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled on the basis of asthma control test scores and the number of severe attacks in the past year. In addition, the potential of VOCs to predict two or more future severe asthma attacks in SysPharmPediA was evaluated. Measurements and Main Results: Complete data were available for 196 children (SysPharmPediA, n = 100; U-BIOPRED, n = 49; PANDA, n = 47). In SysPharmPediA, after randomly splitting the population into training (n = 51) and test (n = 49) sets, three compounds (acetophenone, ethylbenzene, and styrene) distinguished between patients with uncontrolled and controlled asthma. The areas under the receiver operating characteristic curves (AUROCCs) for training and test sets were, respectively, 0.83 (95% confidence interval [CI], 0.65-1.00) and 0.77 (95% CI, 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ± 0.06 (U-BIOPRED) and 0.68 ± 0.05 (PANDA). Attack prediction tests resulted in AUROCCs of 0.71 (95% CI, 0.51-0.91) and 0.71 (95% CI, 0.52-0.90) for the training and test sets. Conclusions: Exhaled metabolite analysis might enable asthma control classification in children. This should stimulate the further development of exhaled metabolite-based point-of-care tests in asthma.

Keywords: asthma; biomarkers; breath tests; gas chromatography–mass spectrometry; volatile organic compounds.

PubMed Disclaimer

Comment in

References