Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 15:196:106506.
doi: 10.1016/j.nbd.2024.106506. Epub 2024 Apr 21.

Dopamine‑iron homeostasis interaction rescues mitochondrial fitness in Parkinson's disease

Affiliations
Free article

Dopamine‑iron homeostasis interaction rescues mitochondrial fitness in Parkinson's disease

Chiara Buoso et al. Neurobiol Dis. .
Free article

Abstract

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.

Keywords: Dopamine; Iron; Mitochondrial function; Parkinson's disease; hiPSC-derived neurons.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors declare no competing interests.

References

Publication types

MeSH terms

Substances

LinkOut - more resources