Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Apr;40(4):369-376.
doi: 10.1051/medsci/2024028. Epub 2024 Apr 23.

[The revolution of AI in drug development]

[Article in French]
Affiliations
Free article
Review

[The revolution of AI in drug development]

[Article in French]
Philippe Moingeon et al. Med Sci (Paris). 2024 Apr.
Free article

Abstract

Artificial intelligence and machine learning enable the construction of predictive models, which are currently used to assist in decision-making throughout the process of drug discovery and development. These computational models can be used to represent the heterogeneity of a disease, identify therapeutic targets, design and optimize drug candidates, and evaluate the efficacy of these drugs on virtual patients or digital twins. By combining detailed patient characteristics with the prediction of potential drug-candidate properties, artificial intelligence promotes the emergence of a "computational" precision medicine, allowing for more personalized treatments, better tailored to patient specificities with the aid of such predictive models. Based on such new capabilities, a mixed reality approach to the development of new drugs is being adopted by the pharmaceutical industry, which integrates the outputs of predictive virtual models with real-world empirical studies.

Title: L’intelligence artificielle, une révolution dans le développement des médicaments.

Abstract: L’intelligence artificielle (IA) et l’apprentissage automatique produisent des modèles prédictifs qui aident à la prise de décisions dans le processus de découverte de nouveaux médicaments. Cette modélisation par ordinateur permet de représenter l’hétérogénéité d’une maladie, d’identifier des cibles thérapeutiques, de concevoir et optimiser des candidats-médicaments et d’évaluer ces médicaments sur des patients virtuels, ou des jumeaux numériques. En facilitant à la fois une connaissance détaillée des caractéristiques des patients et en prédisant les propriétés de multiples médicaments possibles, l’IA permet l’émergence d’une médecine de précision « computationnelle » offrant des traitements parfaitement adaptés aux spécificités des patients.

PubMed Disclaimer

References

    1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry : New estimates of R&D costs. J Health Econ 2016 ; 47 : 20–33.
    1. Waring MJ, Arrowsmith J, Leach ARet al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 2015 ; 14 : 475–486.
    1. Ringel MS, Scannell JW, Baedeker M, et al. Breaking Eroom’s Law. Nat Rev Drug Discov 2020; 19 : 833–4.
    1. Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci 2023; 44 : 411–24.
    1. Turing A.. Computing machinery and intelligence. Mind 1950 ; 59 : 433–518.

LinkOut - more resources