Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 23;14(19):13095-13099.
doi: 10.1039/d4ra02090a. eCollection 2024 Apr 22.

Regioselective C(sp2)-H halogenation of pyrazolo[1,5- a]pyrimidines facilitated by hypervalent iodine(iii) under aqueous and ambient conditions

Affiliations

Regioselective C(sp2)-H halogenation of pyrazolo[1,5- a]pyrimidines facilitated by hypervalent iodine(iii) under aqueous and ambient conditions

Abhinay S Chillal et al. RSC Adv. .

Abstract

An efficient and mild approach has been developed for the regio-selective direct C3 halogenation of pyrazolo[1,5-a]pyrimidines employing readily available potassium halide salts and a hypervalent iodine(iii) reagent at ambient temperature. The protocol is both practical and environmentally friendly, utilizing water as a green solvent, potassium halides as an inexpensive and bench stable halogen source and PIDA as a non-toxic reagent, enabling clean and efficient halogenation at room temperature. The procedure yields a range of C3 halogenated pyrazolo[1,5-a]pyrimidines in good to excellent yields. Mechanistic studies suggest the involvement of electrophilic substitution mechanism in the halogenation process.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Bioactive compounds with pyrazolo[1,5-a]pyrimidine scaffold.
Scheme 1
Scheme 1. Previous work on halogenation of pyrazolo[1,5-a]pyrimidines.
Scheme 2
Scheme 2. Substrate scope for the regioselective halogenation of pyrazolo[1,5-a]pyrimidines and other N-heterocycles. Reaction conditions: 1 (0.2 mmol), KX (0.3 mmol), PIDA (1.0 equiv.), H2O (3.0 mL), rt (25–27 °C), 3 h. Yields are isolated yields. aReactions were carried out in MeOH.
Scheme 3
Scheme 3. Gram scale synthesis.
Scheme 4
Scheme 4. Synthetic application in cross coupling reactions.
Scheme 5
Scheme 5. Control experiments.
Scheme 6
Scheme 6. Plausible reaction mechanism.

Similar articles

References

    1. Fujimori D. G. Walsh C. T. Curr. Opin. Chem. Biol. 2007;11:553–560. doi: 10.1016/j.cbpa.2007.08.002. - DOI - PMC - PubMed
    2. Hughes C. C. MacMillan J. B. Gaudêncio S. P. Jensen P. R. Fenical W. Angew. Chem., Int. Ed. 2009;48:725–727. doi: 10.1002/anie.200804890. - DOI - PMC - PubMed
    3. Kaur K. Jain M. Reddy R. P. Jain R. Eur. J. Med. Chem. 2010;45:3245–3264. doi: 10.1016/j.ejmech.2010.04.011. - DOI - PubMed
    4. Vandekerckhove S. Tran H. G. Desmet T. D’hooghe M. Bioorg. Med. Chem. 2013;23:4641–4643. doi: 10.1016/j.bmcl.2013.06.014. - DOI - PubMed
    1. Gál B. Bucher C. Burns N. Z. Mar. Drugs. 2016;14:206. doi: 10.3390/md14110206. - DOI - PMC - PubMed
    2. Quémener M. Kikionis S. Fauchon M. Toueix Y. Aulanier F. Makris A. M. Roussis V. Ioannou E. Hellio C. Mar. Drugs. 2022;20:32. doi: 10.3390/md20010032. - DOI - PMC - PubMed
    3. Wang C. Du W. Lu H. Lan J. Liang K. Cao S. Molecules. 2021;26:2754. doi: 10.3390/molecules26092754. - DOI - PMC - PubMed
    4. Winterton N. Green Chem. 2000;2:173–225. doi: 10.1039/B003394O. - DOI
    1. Nawghare I. S. Singh A. K. Maibam A. Deshmukh S. S. Krishnamurty S. Krishnamoorthy K. Nithyanandhan J. Mater. Adv. 2023;4:3270–3284. doi: 10.1039/D3MA00277B. - DOI
    2. Tuikka M. Hirva P. Rissanen K. Korppi-Tommola J. Haukka M. ChemComm. 2011;47:4499–4501. doi: 10.1039/C1CC10491H. - DOI - PubMed
    1. Fairlamb I. J. S. Chem. Soc. Rev. 2007;36:1036–1045. doi: 10.1039/B611177G. - DOI - PubMed
    2. Hooshmand S. E. Heidari B. Sedghi R. Varma R. S. Green Chem. 2019;21:381–405. doi: 10.1039/C8GC02860E. - DOI
    3. Kambe N. Iwasaki T. Terao J. Chem. Soc. Rev. 2011;40:4937–4947. doi: 10.1039/C1CS15129K. - DOI - PubMed
    4. Ruiz-Castillo P. Buchwald S. L. Chem. Rev. 2016;116:12564–12649. doi: 10.1021/acs.chemrev.6b00512. - DOI - PMC - PubMed
    5. Sun C. L. Li H. Yu D. G. Yu M. Zhou X. Lu X. Y. Huang K. Zheng S. F. Li B. J. Shi Z. J. Nat. Chem. 2010;2:1044–1049. doi: 10.1038/nchem.862. - DOI - PubMed
    6. Sun C. L. Shi Z. J. Chem. Rev. 2014;114:9219–9280. doi: 10.1021/cr400274j. - DOI - PubMed
    1. Dorababu A. Arch. Pharm. 2022;355:2200154. doi: 10.1002/ardp.202200154. - DOI - PubMed
    2. Johansson N. G. Dreano L. Vidilaseris K. Khattab A. Liu J. Lasbleiz A. Ribeiro O. Kiriazis A. Boije af Gennäs G. Meri S. Goldman A. Yli-Kauhaluoma J. Xhaard H. ChemMedChem. 2021;16:3360–3367. doi: 10.1002/cmdc.202100392. - DOI - PMC - PubMed
    3. Kiessling A. Wiesinger R. Sperl B. Berg T. ChemMedChem. 2007;2:627–630. doi: 10.1002/cmdc.200600294. - DOI - PubMed
    4. McGillan P. Berry N. G. Nixon G. L. Leung S. C. Webborn P. J. H. Wenlock M. C. Kavanagh S. Cassidy A. Clare R. H. Cook D. A. Johnston K. L. Ford L. Ward S. A. Taylor M. J. Hong W. D. O'Neill P. M. ACS Med. Chem. Lett. 2021;12:1421–1426. doi: 10.1021/acsmedchemlett.1c00216. - DOI - PMC - PubMed