Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 24;196(5):468.
doi: 10.1007/s10661-024-12612-3.

Biomonitoring potentially toxic elements in atmospheric particulate matter of greater Dhaka region using leaves of higher plants

Affiliations

Biomonitoring potentially toxic elements in atmospheric particulate matter of greater Dhaka region using leaves of higher plants

Zuairia Binte Jashim et al. Environ Monit Assess. .

Abstract

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.

Keywords: Air pollution; Biomonitoring; Particulate matter; Potentially toxic elements (PTEs).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abdallah, Y. N., & Mejnun, G. E. (2013). Change of the morpho-anatomical structure of leaves of Ligustrum japonicum and Olea europea caused by heavy metal pollution. Caspian Journal of Applied Sciences Research, 2(2).
    1. Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Petrella, F. (2002). Heavy metals in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere, 49(6), 545–557.
    1. Ahmed, M. J., Ali, M. K., Hossain, M., Siraj, S., & Ahsan, M. A. (2012). Determination of trace metals in air of Chittagong city-Bangladesh. European Journal of Chemistry, 3(4), 416–420.
    1. Alahabadi, A., Ehrampoush, M. H., Miri, M., Aval, H. E., Yousefzadeh, S., Ghaffari, H. R., ... & Hosseini-Bandegharaei, A. (2017). A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere, 172, 459–467.
    1. Alfani, A., Bartoli, G., Rutigliano, F. A., Maisto, G., & Virzo De Santo, A. (1996). Trace metal biomonitoring in the soil and the leaves of Quercus ilex in the urban area of Naples. Biological Trace Element Research, 51, 117–131.

LinkOut - more resources