Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun:370:239-255.
doi: 10.1016/j.jconrel.2024.04.037. Epub 2024 Apr 27.

Lipo-Xenopeptide Polyplexes for CRISPR/Cas9 based Gene editing at ultra-low dose

Affiliations

Lipo-Xenopeptide Polyplexes for CRISPR/Cas9 based Gene editing at ultra-low dose

Janin Germer et al. J Control Release. 2024 Jun.

Abstract

Double pH-responsive xenopeptide carriers containing succinoyl tetraethylene pentamine (Stp) and lipo amino fatty acids (LAFs) were evaluated for CRISPR/Cas9 based genome editing. Different carrier topologies, variation of LAF/Stp ratios and LAF types as Cas9 mRNA/sgRNA polyplexes were screened in three different reporter cell lines using three different genomic targets (Pcsk9, eGFP, mdx exon 23). One U-shaped and three bundle (B2)-shaped lipo-xenopeptides exhibiting remarkable efficiencies were identified. Genome editing potency of top carriers were observed at sub-nanomolar EC50 concentrations of 0.4 nM sgRNA and 0.1 nM sgRNA for the top U-shape and top B2 carriers, respectively, even after incubation in full (≥ 90%) serum. Polyplexes co-delivering Cas9 mRNA/sgRNA with a single stranded DNA template for homology directed gene editing resulted in up to 38% conversion of eGFP to BFP in reporter cells. Top carriers were formulated as polyplexes or lipid nanoparticles (LNPs) for subsequent in vivo administration. Formulations displayed long-term physicochemical and functional stability upon storage at 4 °C. Importantly, intravenous administration of polyplexes or LNPs mediated in vivo editing of the dystrophin gene, triggering mRNA exon 23 splicing modulation in dystrophin-expressing cardiac muscle, skeletal muscle and brain tissue.

Keywords: CRISPR Cas9; Delivery; Genome editing; Lipid nanoparticle; Polyplexes; Xenopeptide; mRNA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

LinkOut - more resources