Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2024 Feb 16;15(4):1085-1095.
doi: 10.1039/d3md00651d. eCollection 2024 Apr 24.

AiZynth impact on medicinal chemistry practice at AstraZeneca

Affiliations
Editorial

AiZynth impact on medicinal chemistry practice at AstraZeneca

Jason D Shields et al. RSC Med Chem. .

Abstract

AstraZeneca chemists have been using the AI retrosynthesis tool AiZynth for three years. In this article, we present seven examples of how medicinal chemists using AiZynth positively impacted their drug discovery programmes. These programmes run the gamut from early-stage hit confirmation to late-stage route optimisation efforts. We also discuss the different use cases for which AI retrosynthesis tools are best suited.

PubMed Disclaimer

Conflict of interest statement

All authors of this article except YL and YZ are present or former employees of AstraZeneca and may have or have had a financial stake in the performance of the company.

Figures

Fig. 1
Fig. 1. A) AiZynthFinder-proposed synthesis of 1. B) Laboratory synthesis of 1: i) Ni(ii)Cl2·6H2O (1 equiv.), NaBH4 (4 equiv.), MeOH, 0 °C, 1 h, 96% yield; ii) isobutyl chloroformate (1 equiv.), N-methylmorpholine (1 equiv.), 5 (1 equiv.), 0 °C; then AcOH, 70 °C, 16 h, 93% yield; iii) HCl, MeOH, rt, 1 h, 92% yield.
Fig. 2
Fig. 2. Example of AiZynth proposing a commercial starting material to a desired intermediate. Additional substitution has been omitted to focus on desired reactivity.
Fig. 3
Fig. 3. Example of AiZynth's impact on DOS: an unorthodox Sonogashira reaction carried out on boronate 13 without deleterious Suzuki reactivity yielded high value synthetic intermediate 14.
Fig. 4
Fig. 4. A) AiZynthfinder-proposed synthesis of 15. B) Laboratory synthesis of 15: i) Na2CO3 (2 equiv.), water, 100 °C, 16 h, 32% yield, 3 : 1 r.r.; ii) AcOH, 80 °C, 90 min; then HCl, 100 °C, 1 h, 13% yield.
Fig. 5
Fig. 5. A) Two one-step retrosyntheses strung together to form a proposal for the synthesis of 20. The numbers in the diamond nodes represent the rank of the prediction, by feasibility. B) Laboratory synthesis of 20: i) n-BuLi (1.25 equiv.), Et2O, −78 °C to rt, 2 h, 64% yield; ii) imidazole (1.5 equiv.), TBSCl (1.2 equiv.), DCM, 0 °C to rt, 80% yield; iii) NH4OAc (10 equiv.), Na[(BH3)CN] (2 equiv.), MeCN/MeOH, 65 °C, 1 h, carried crude; iv) Boc2O (1.5 equiv.), NEt3 (3 equiv.), DCM, rt, 1 h, 30% yield; v) CuCl2 (0.2 equiv.), acetone/water, 80 °C, 2 h, 70% yield.
Fig. 6
Fig. 6. A) Two one-step retrosyntheses strung together for an AI-proposed synthesis of 27. Blue borders indicate commercial availability. B) Laboratory synthesis of 27: i) EDC (1.5 equiv.), HOBt (1.5 equiv.), NaHCO3 (3 equiv.), DMF, 60 °C, 3 h; ii) 3:1 DCM/TFA, rt, 2 h, 93% yield; iii) 8-methoxy-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (1 equiv.), chloro-N,N,N′,N′-tetramethylformamidinium hexafluorophosphate (1 equiv.), 1-methylimidazole (1 equiv.), DMF, rt, 16 h, 34% yield.
Fig. 7
Fig. 7. A) Two retrosynthetic strategies for appending pyrazole solvent tail. Left: SNAr strategy. Right: Cross-coupling strategy. B) Three proposals from AiZynth for synthesizing 37. C) Laboratory synthesis of 40via decarboxylative iodination: i) NIS (2 equiv.), LiOAc (0.2 equiv.), AcOH/water, 50 °C, 24 h, 92% yield; ii) 36 (1 equiv.), 38 (2 equiv.), CuI (0.30 equiv.), rac-trans-N1,N2-dimethylcyclohexane-1,2-diamine (0.20 equiv.), Cs2CO3 (1.5 equiv.), dioxane, 120 °C, 24 h, product detected.

References

    1. Plowright A. T. Johnstone C. Kihlberg J. Pettersson J. Robb G. Thompson R. A. Drug Discovery Today. 2012;17:56–62. doi: 10.1016/j.drudis.2011.09.012. - DOI - PubMed
    1. Merk D. Friedrich L. Grisoni F. Schneider G. Mol. Inf. 2018;37:1700153. doi: 10.1002/minf.201700153. - DOI - PMC - PubMed
    1. Jiang Y. Yu Y. Kong M. Mei Y. Yuan L. Huang Z. Kuang K. Wang Z. Yao H. Zou J. Coley C. W. Wei Y. Engineering. 2022;25:32–50. doi: 10.1016/j.eng.2022.04.021. - DOI
    1. Lin S. Schorpp K. Rothenaigner I. Hadian K. Drug Discovery Today. 2020;25:1348–1361. doi: 10.1016/j.drudis.2020.06.001. - DOI - PubMed
    1. Li X. Xu Y. Yao H. Lin K. J. Cheminf. 2020;12:42. - PMC - PubMed

Publication types

LinkOut - more resources