Review of Vision-Based Environmental Perception for Lower-Limb Exoskeleton Robots
- PMID: 38667265
- PMCID: PMC11048416
- DOI: 10.3390/biomimetics9040254
Review of Vision-Based Environmental Perception for Lower-Limb Exoskeleton Robots
Abstract
The exoskeleton robot is a wearable electromechanical device inspired by animal exoskeletons. It combines technologies such as sensing, control, information, and mobile computing, enhancing human physical abilities and assisting in rehabilitation training. In recent years, with the development of visual sensors and deep learning, the environmental perception of exoskeletons has drawn widespread attention in the industry. Environmental perception can provide exoskeletons with a certain level of autonomous perception and decision-making ability, enhance their stability and safety in complex environments, and improve the human-machine-environment interaction loop. This paper provides a review of environmental perception and its related technologies of lower-limb exoskeleton robots. First, we briefly introduce the visual sensors and control system. Second, we analyze and summarize the key technologies of environmental perception, including related datasets, detection of critical terrains, and environment-oriented adaptive gait planning. Finally, we analyze the current factors limiting the development of exoskeleton environmental perception and propose future directions.
Keywords: computer vision; environmental perception; gait planning; lower-limb exoskeleton robots.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures







Similar articles
-
Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.Front Neurorobot. 2023 Jul 3;17:1186175. doi: 10.3389/fnbot.2023.1186175. eCollection 2023. Front Neurorobot. 2023. PMID: 37465413 Free PMC article. Review.
-
Lower Limb Exoskeleton Sensors: State-of-the-Art.Sensors (Basel). 2022 Nov 23;22(23):9091. doi: 10.3390/s22239091. Sensors (Basel). 2022. PMID: 36501804 Free PMC article. Review.
-
Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion.Appl Bionics Biomech. 2022 Mar 26;2022:9933018. doi: 10.1155/2022/9933018. eCollection 2022. Appl Bionics Biomech. 2022. PMID: 35378794 Free PMC article. Review.
-
Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.Proc Inst Mech Eng H. 2021 Dec;235(12):1375-1385. doi: 10.1177/09544119211032010. Epub 2021 Jul 13. Proc Inst Mech Eng H. 2021. PMID: 34254562 Review.
-
Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.J Neuroeng Rehabil. 2021 Feb 1;18(1):22. doi: 10.1186/s12984-021-00815-5. J Neuroeng Rehabil. 2021. PMID: 33526065 Free PMC article.
Cited by
-
Obstacle Feature Information-Based Motion Decision-Making Method for Obstacle-Crossing Motions in Lower Limb Exoskeleton Robots.Biomimetics (Basel). 2025 May 12;10(5):311. doi: 10.3390/biomimetics10050311. Biomimetics (Basel). 2025. PMID: 40422141 Free PMC article.
References
-
- Qiu S., Pei Z., Wang C., Tang Z. Systematic Review on Wearable Lower Extremity Robotic Exoskeletons for Assisted Locomotion. J. Bionic Eng. 2022;20:436–469. doi: 10.1007/s42235-022-00289-8. - DOI
-
- Rupal B.S., Rafique S., Singla A., Singla E., Isaksson M., Virk G.S. Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. Int. J. Adv. Robot. Syst. 2017;14:6. doi: 10.1177/1729881417743554. - DOI
-
- Yang Z., Zhang J., Gui L., Zhang Y., Yang X. Summarize on the Control Method of Exoskeleton Robot. J. Nav. Aviat. Univ. 2009;24:520–526.
-
- Kazerooni H., Racine J.-L., Huang L., Steger R. On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX); Proceedings of the 2005 IEEE International Conference on Robotics and Automation; Barcelona, Spain. 18–22 April 2005; pp. 4353–4360. - DOI
-
- Whitney D.E. Historical Perspective and State of the Art in Robot Force Control. Int. J. Robot. Res. 1987;6:3–14. doi: 10.1177/027836498700600101. - DOI
LinkOut - more resources
Full Text Sources