Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 May 15:460:122997.
doi: 10.1016/j.jns.2024.122997. Epub 2024 Apr 5.

Stroke risk prediction models: A systematic review and meta-analysis

Affiliations
Meta-Analysis

Stroke risk prediction models: A systematic review and meta-analysis

Osahon Jeffery Asowata et al. J Neurol Sci. .

Abstract

Background: Prediction algorithms/models are viable methods for identifying individuals at high risk of stroke across diverse populations for timely intervention. However, evidence summarizing the performance of these models is limited. This study examined the performance and weaknesses of existing stroke risk-score-prediction models (SRSMs) and whether performance varied by population and region.

Methods: PubMed, EMBASE, and Web of Science were searched for articles on SRSMs from the earliest records until February 2022. The Prediction Model Risk of Bias Assessment Tool was used to assess the quality of eligible articles. The performance of the SRSMs was assessed by meta-analyzing C-statistics (0 and 1) estimates from identified studies to determine the overall pooled C-statistics by fitting a linear restricted maximum likelihood in a random effect model.

Results: Overall, 17 articles (cohort study = 15, nested case-control study = 2) comprising 739,134 stroke cases from 6,396,594 participants from diverse populations/regions (Asia; n = 8, United States; n = 3, and Europe and the United Kingdom; n = 6) were eligible for inclusion. The overall pooled c-statistics of SRSMs was 0.78 (95%CI: 0.75, 0.80; I2 = 99.9%), with most SRSMs developed using cohort studies; 0.78 (95%CI: 0.75, 0.80; I2 = 99.9%). The subgroup analyses by geographical region: Asia [0.81 (95%CI: 0.79, 0.83; I2 = 99.8%)], Europe and the United Kingdom [0.76 (95%CI: 0.69, 0.83; I2 = 99.9%)] and the United States only [0.75 (95%CI: 0.72, 0.78; I2 = 73.5%)] revealed relatively indifferent performances of SRSMs.

Conclusion: SRSM performance varied widely, and the pooled c-statistics of SRSMs suggested a fair predictive performance, with very few SRSMs validated in independent population group(s) from diverse world regions.

Keywords: Brain Health; Data Science; Machine learning; Precision Medicine; Prediction model; Risk score; Stroke.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors have no conflict of interest.

References

Publication types

LinkOut - more resources