Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing
- PMID: 38678380
- DOI: 10.1002/adma.202401678
Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing
Abstract
Tactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide-based self-assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self-assembly of 9-fluorenylmethoxycarbonyl-modifid diphenylalanine (Fmoc-FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well-established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10-fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9-fluorenylmethoxycarbonyl-modifid 3,4-dihydroxy-l-phenylalanine (Fmoc-DOPA), the Fmoc-FF self-assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation-based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self-assembly with adjustable features for tactile sensing applications.
Keywords: aromatic short peptides; bioinspired electronics; hydrogelation; molecular manufacturing; tactile sensing.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-L-phenylalanine) peptide motif.ACS Nano. 2014 Jul 22;8(7):7220-8. doi: 10.1021/nn502240r. Epub 2014 Jun 23. ACS Nano. 2014. PMID: 24936704 Free PMC article.
-
Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12702-7. doi: 10.1021/acsami.5b01251. Epub 2015 Jun 3. ACS Appl Mater Interfaces. 2015. PMID: 25994251
-
Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.Biopolymers. 2017 Mar;108(2). doi: 10.1002/bip.22994. Biopolymers. 2017. PMID: 27696352
-
Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications.J Mater Chem B. 2019 Sep 14;7(34):5142-5155. doi: 10.1039/c9tb01043b. Epub 2019 Aug 5. J Mater Chem B. 2019. PMID: 31380554 Review.
-
Differently N-Capped Analogues of Fmoc-FF.Chemistry. 2023 May 16;29(28):e202300661. doi: 10.1002/chem.202300661. Epub 2023 Apr 5. Chemistry. 2023. PMID: 36877530 Review.
Cited by
-
Recent Developments and Applications of Tactile Sensors with Biomimetic Microstructures.Biomimetics (Basel). 2025 Feb 27;10(3):147. doi: 10.3390/biomimetics10030147. Biomimetics (Basel). 2025. PMID: 40136801 Free PMC article. Review.
-
LysSYL-Loaded pH-Switchable Self-Assembling Peptide Hydrogels Promote Methicillin-Resistant Staphylococcus Aureus Elimination and Wound Healing.Adv Mater. 2024 Dec;36(52):e2412154. doi: 10.1002/adma.202412154. Epub 2024 Nov 16. Adv Mater. 2024. PMID: 39548922 Free PMC article.
-
Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation.Adv Sci (Weinh). 2025 Apr;12(15):e2410471. doi: 10.1002/advs.202410471. Epub 2025 Jan 22. Adv Sci (Weinh). 2025. PMID: 39840461 Free PMC article.
References
-
- Y. Jiang, Z. Zhang, Y.‐X. Wang, D. Li, C.‐T. Coen, E. Hwaun, G. Chen, H.‐C. Wu, D. Zhong, S. Niu, W. Wang, A. Saberi, J.‐C. Lai, Y. Wu, Y. Wang, A. A. Trotsyuk, K. Y. Loh, C.‐C. Shih, W. Xu, K. Liang, K. Zhang, Y. Bai, G. Gurusankar, W. Hu, W. Jia, Z. Cheng, R. H. Dauskardt, G. C. Gurtner, J. B.‐H. Tok, K. Deisseroth, et al., Science 2022, 375, 1411.
-
- J. Kim, S. Yoo, C. Liu, S. S. Kwak, J. R. Walter, S. Xu, J. A. J. N. R. B. Rogers, Nat. Rev. Bioeng. 2023, 1, 631.
-
- Y. Luo, M. R. Abidian, J.‐H. Ahn, D. Akinwande, A. M. Andrews, M. Antonietti, Z. Bao, M. Berggren, C. A. Berkey, C. J. Bettinger, ACS Nano 2023, 17, 5211.
-
- Y. F. Liu, W. Wang, X. F. Chen, Front. Bioeng. Biotechnol. 2023, 11.
-
- Q. Hong, T. Q. Liu, X. H. Guo, Z. H. Yan, W. Li, L. Liu, D. Wang, W. Q. Hong, Z. B. Qian, A. Q. Zhang, Z. A. Wang, X. H. Li, D. D. Wang, Z. H. Mai, Y. N. Zhao, F. Yan, G. Z. Xing, Sens. Actuators B Chem. 2024, 404, 135255.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources