Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun:175:116661.
doi: 10.1016/j.biopha.2024.116661. Epub 2024 Apr 27.

Biological effects and mechanism of β-amyloid aggregation inhibition by penetrable recombinant human HspB5-ACD structural domain protein

Affiliations
Free article

Biological effects and mechanism of β-amyloid aggregation inhibition by penetrable recombinant human HspB5-ACD structural domain protein

Chang Liu et al. Biomed Pharmacother. 2024 Jun.
Free article

Abstract

Alzheimer's disease (AD) is a global medical challenge. Studies have shown that neurotoxicity caused by pathological aggregation of β-amyloid (Aβ) is an important factor leading to AD. Therefore, inhibiting the pathological aggregation of Aβ is the key to treating AD. The recombinant human HspB5-ACD structural domain protein (AHspB5) prepared by our group in the previous period has been shown to have anti-amyloid aggregation effects, but its inability to penetrate biological membranes has limited its development. In this study, we prepared a recombinant fusion protein (T-AHspB5) of TAT and AHspB5. In vitro experiments showed that T-AHspB5 inhibited the formation of Aβ1-42 protofibrils and had the ability to penetrate the blood-brain barrier; in cellular experiments, T-AHspB5 prevented Aβ1-42-induced oxidative stress damage, apoptosis, and inflammatory responses in neuronal cells, and its mechanism of action was related to microglia activation and mitochondria-dependent apoptotic pathway. In animal experiments, T-AHspB5 improved memory and cognitive dysfunction and inhibited pathological changes of AD in APP/PS1 mice. In conclusion, this paper is expected to reveal the intervention mechanism and biological effect of T-AHspB5 on pathological aggregation of Aβ1-42, provide a new pathway for the treatment of AD, and lay the foundation for the future development and application of T-AHspB5.

Keywords: ACD structural domain; AD; Aβ(1–42); HspB5; TAT.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms