Efficient computational modeling of electronic stopping power of organic polymers for proton therapy optimization
- PMID: 38684890
- PMCID: PMC11058815
- DOI: 10.1038/s41598-024-60651-0
Efficient computational modeling of electronic stopping power of organic polymers for proton therapy optimization
Abstract
This comprehensive study delves into the intricate interplay between protons and organic polymers, offering insights into proton therapy in cancer treatment. Focusing on the influence of the spatial electron density distribution on stopping power estimates, we employed real-time time-dependent density functional theory coupled with the Penn method. Surprisingly, the assumption of electron density homogeneity in polymers is fundamentally flawed, resulting in an overestimation of stopping power values at energies below 2 MeV. Moreover, the Bragg rule application in specific compounds exhibited significant deviations from experimental data around the stopping maximum, challenging established norms.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Energy loss of 70 MeV protons in organic polymers.Med Phys. 1993 Jan-Feb;20(1):135-41. doi: 10.1118/1.597095. Med Phys. 1993. PMID: 8384287
-
Physical characterization of therapeutic proton delivery through common dental materials.Med Phys. 2022 May;49(5):2904-2913. doi: 10.1002/mp.15602. Epub 2022 Mar 21. Med Phys. 2022. PMID: 35276753
-
K-Shell Core-Electron Excitations in Electronic Stopping of Protons in Water from First Principles.Phys Rev Lett. 2019 Aug 9;123(6):066401. doi: 10.1103/PhysRevLett.123.066401. Phys Rev Lett. 2019. PMID: 31491149
-
Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATE-RTion.Med Phys. 2021 May;48(5):2580-2591. doi: 10.1002/mp.14726. Epub 2021 Mar 27. Med Phys. 2021. PMID: 33465819
-
Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer.Chem Rev. 2022 Jun 22;122(12):10599-10650. doi: 10.1021/acs.chemrev.1c00929. Epub 2022 Mar 1. Chem Rev. 2022. PMID: 35230812 Review.
References
LinkOut - more resources
Full Text Sources