Differential Effects of HDAC6 Inhibition Versus Knockout During Hepatic Ischemia-Reperfusion Injury Highlight Importance of HDAC6 C-terminal Zinc-finger Ubiquitin-binding Domain
- PMID: 38685198
- DOI: 10.1097/TP.0000000000005042
Differential Effects of HDAC6 Inhibition Versus Knockout During Hepatic Ischemia-Reperfusion Injury Highlight Importance of HDAC6 C-terminal Zinc-finger Ubiquitin-binding Domain
Abstract
Background: Ischemia-reperfusion injury (IRI) causes significant morbidity in liver transplantation among other medical conditions. IRI following liver transplantation contributes to poor outcomes and early graft loss. Histone/protein deacetylases (HDACs) regulate diverse cellular processes, play a role in mediating tissue responses to IRI, and may represent a novel therapeutic target in preventing IRI in liver transplantation.
Methods: Using a previously described standardized model of murine liver warm IRI, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were assessed at 24 and 48 h after reperfusion to determine the effect of different HDAC inhibitors.
Results: Broad HDAC inhibition with trichostatin-A (TSA) was protective against hepatocellular damage ( P < 0.01 for AST and P < 0.05 for ALT). Although HDAC class I inhibition with MS-275 provided statistically insignificant benefit, tubastatin-A (TubA), an HDAC6 inhibitor with additional activity against HDAC10, provided significant protection against liver IRI ( P < 0.01 for AST and P < 0.001 for ALT). Surprisingly genetic deletion of HDAC6 or -10 did not replicate the protective effects of HDAC6 inhibition with TubA, whereas treatment with an HDAC6 BUZ-domain inhibitor, LakZnFD, eliminated the protective effect of TubA treatment in liver ischemia ( P < 0.01 for AST and P < 0.01 for ALT).
Conclusions: Our findings suggest TubA, a class IIb HDAC inhibitor, can mitigate hepatic IRI in a manner distinct from previously described class I HDAC inhibition and requires the HDAC6 BUZ-domain activity. Our data corroborate previous findings that HDAC targets for therapeutic intervention of IRI may be tissue-specific, and identify HDAC6 inhibition as a possible target in the treatment of liver IRI.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflicts of interest.
References
-
- Olthoff KM, Kulik L, Samstein B, et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010;16:943–949.
-
- Deschenes M. Early allograft dysfunction: causes, recognition, and management. Liver Transpl. 2013;19(Suppl 2):S6–S8.
-
- Michelotto J, Gassner J, Moosburner S, et al. Ex vivo machine perfusion: current applications and future directions in liver transplantation. Langenbecks Arch Surg. 2021;406:39–54.
-
- Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.
-
- Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials