Magnesium doped biochar for simultaneous adsorption of phosphate and nitrogen ions from aqueous solution
- PMID: 38685320
- DOI: 10.1016/j.chemosphere.2024.142130
Magnesium doped biochar for simultaneous adsorption of phosphate and nitrogen ions from aqueous solution
Abstract
Phosphorus (P) and Ammonium Nitrogen (N) are essential nutrients for plants and environmental stability. However, their excess in water causes eutrophication, damaging aquatic ecosystems. While adsorption is a promising solution, finding affordable and efficient adsorbents remains a challenge. In this study, magnesium (Mg), iron (Fe), and Mg/Fe doped biochars (BC) adsorbents were synthesized, and evaluated for adsorption of individual P and N and a P + N mixture from a solution and wastewater from a wastewater treatment plant. Compared to other adsorbents, Mg/BC showed excellent performance in adsorbing phosphorus (P) and ammonium nitrogen (N) from aqueous solutions. It demonstrated a large adsorption capacity of 64.65 mg/g and 62.50 mg/g from individual P and N solutions, and 30.3 mg/g and 27.67 mg/g from the P and N mixture solution, respectively. In addition, Mg/BC efficiently removed P and N from real-life wastewater. In the real wastewater, P and N removal efficiencies reached 88.30% and 59.36%, respectively. Kinetics analysis revealed that the pseudo-second-order model accurately described the adsorption of phosphorus (P) and ammonium nitrogen (N) in all solutions. The adsorbent followed the monolayer-Langmuir isotherm for N ions and the multilayer-Freundlich isotherm for P, indicating efficient adsorption processes. Thermodynamic experiments indicated that the adsorption of P and N was not only feasible but also occurred spontaneously in a natural manner. This study revealed that the strategic modification of biochar plays a crucial role in advancing effective wastewater treatment technologies designed for nutrient removal.
Keywords: Adsorption; Adsorption mechanism; Iron-magnesium-biochar; Nitrogen; Phosphorous; Wastewater.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
[Effect of Nitrogen on Magnesium Modified Biochar Adsorption to Phosphorus].Huan Jing Ke Xue. 2019 Feb 8;40(2):669-676. doi: 10.13227/j.hjkx.201807061. Huan Jing Ke Xue. 2019. PMID: 30628329 Chinese.
-
Simultaneous adsorption of tetracycline, ammonium and phosphate from wastewater by iron and nitrogen modified biochar: Kinetics, isotherm, thermodynamic and mechanism.Chemosphere. 2022 Apr;293:133574. doi: 10.1016/j.chemosphere.2022.133574. Epub 2022 Jan 8. Chemosphere. 2022. PMID: 35016962
-
Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater.Int J Environ Res Public Health. 2014 Sep 5;11(9):9217-37. doi: 10.3390/ijerph110909217. Int J Environ Res Public Health. 2014. PMID: 25198685 Free PMC article.
-
Evaluating biochar for adsorption of ammonium nitrogen in wastewater:insights into modifications and mechanisms.Environ Res. 2025 Jul 15;277:121615. doi: 10.1016/j.envres.2025.121615. Epub 2025 Apr 14. Environ Res. 2025. PMID: 40239738 Review.
-
Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review.J Environ Manage. 2024 Nov;370:122407. doi: 10.1016/j.jenvman.2024.122407. Epub 2024 Sep 11. J Environ Manage. 2024. PMID: 39265490 Review.
Cited by
-
Trimetallic Fe-Zn-Mn (Oxy)Hydroxide-Enhanced Coffee Biochar for Simultaneous Phosphate and Ammonium Recovery and Recycling.Nanomaterials (Basel). 2025 Jun 2;15(11):849. doi: 10.3390/nano15110849. Nanomaterials (Basel). 2025. PMID: 40497897 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources