[Research progress on emotion recognition by combining virtual reality environment and electroencephalogram signals]
- PMID: 38686422
- PMCID: PMC11058485
- DOI: 10.7507/1001-5515.202310045
[Research progress on emotion recognition by combining virtual reality environment and electroencephalogram signals]
Abstract
Emotion recognition refers to the process of determining and identifying an individual's current emotional state by analyzing various signals such as voice, facial expressions, and physiological indicators etc. Using electroencephalogram (EEG) signals and virtual reality (VR) technology for emotion recognition research helps to better understand human emotional changes, enabling applications in areas such as psychological therapy, education, and training to enhance people's quality of life. However, there is a lack of comprehensive review literature summarizing the combined researches of EEG signals and VR environments for emotion recognition. Therefore, this paper summarizes and synthesizes relevant research from the past five years. Firstly, it introduces the relevant theories of VR and EEG signal emotion recognition. Secondly, it focuses on the analysis of emotion induction, feature extraction, and classification methods in emotion recognition using EEG signals within VR environments. The article concludes by summarizing the research's application directions and providing an outlook on future development trends, aiming to serve as a reference for researchers in related fields.
情绪识别是指通过分析语音、表情、生理指标等多种信号,来判断和识别个体当前的情绪状态。将脑电(EEG)信号和虚拟现实(VR)技术用于情绪识别研究,有助于更准确地了解人类情绪变化,从而应用于心理治疗、教育培训等领域,提升人们的生活质量。然而联合EEG信号和VR环境的情绪识别研究尚缺乏综述文献的全面梳理总结,为此本文总结归纳了近五年相关研究,首先介绍了VR和EEG信号情绪识别的相关理论;其次重点分析了VR环境中EEG信号情绪识别的情绪诱发、特征提取和分类识别的方法;总结了该研究的应用方向;最后对未来的发展趋势进行展望。通过本文综述,期望可为相关领域的研究工作者提供参考。.
Keywords: Electroencephalogram signal; Emotion recognition; Machine learning; Virtual reality technology.
Conflict of interest statement
利益冲突声明:本文全体作者均声明不存在利益冲突。
Figures
Similar articles
-
A Wearable Head Mounted Display Bio-Signals Pad System for Emotion Recognition.Sensors (Basel). 2021 Dec 26;22(1):142. doi: 10.3390/s22010142. Sensors (Basel). 2021. PMID: 35009684 Free PMC article.
-
Advancing emotion recognition with Virtual Reality: A multimodal approach using physiological signals and machine learning.Comput Biol Med. 2025 Jul;193:110310. doi: 10.1016/j.compbiomed.2025.110310. Epub 2025 May 26. Comput Biol Med. 2025. PMID: 40424763
-
Emotion recognition in EEG signals using deep learning methods: A review.Comput Biol Med. 2023 Oct;165:107450. doi: 10.1016/j.compbiomed.2023.107450. Epub 2023 Sep 9. Comput Biol Med. 2023. PMID: 37708717 Review.
-
EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities.Comput Intell Neurosci. 2020 Sep 16;2020:8875426. doi: 10.1155/2020/8875426. eCollection 2020. Comput Intell Neurosci. 2020. PMID: 33014031 Free PMC article. Review.
-
[Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):56-66. doi: 10.7507/1001-5515.202101010. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022. PMID: 35231966 Free PMC article. Chinese.
References
-
- Valentina M, Francesca B, Chiara S, et al How do emotions elicited in virtual reality affect our memory? a systematic review. Computers in Human Behavior. 2023;146:107812. doi: 10.1016/j.chb.2023.107812. - DOI
-
-
杨俊峰. 虚拟现实产业迈入快车道. 人民日报海外版, 2022. [2022-11-23(8)]. DOI: 10.28656/n.cnki.nrmrh.2022.004035.
-
-
- Ekman, P Basic emotions. Handbook of Cognition and Emotion. 1999;98(16):45–60.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous