Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance
- PMID: 38690719
- DOI: 10.1096/fj.202302665R
Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Keywords: DNA methylation; age‐related bone loss; bone homeostasis; bone marrow mesenchymal stem cell; histone modification; noncoding RNA.
© 2024 Federation of American Societies for Experimental Biology.
Similar articles
-
Epigenetic Regulators of Mesenchymal Stem/Stromal Cell Lineage Determination.Curr Osteoporos Rep. 2020 Oct;18(5):597-605. doi: 10.1007/s11914-020-00616-0. Curr Osteoporos Rep. 2020. PMID: 32794139 Free PMC article. Review.
-
PPARγ forms a bridge between DNA methylation and histone acetylation at the C/EBPα gene promoter to regulate the balance between osteogenesis and adipogenesis of bone marrow stromal cells.FEBS J. 2013 Nov;280(22):5801-14. doi: 10.1111/febs.12500. Epub 2013 Sep 13. FEBS J. 2013. PMID: 23981481
-
Epigenetic Regulation of Osteogenic Differentiation of Mesenchymal Stem Cells.Curr Stem Cell Res Ther. 2016;11(3):235-46. doi: 10.2174/1574888x10666150528153313. Curr Stem Cell Res Ther. 2016. PMID: 26018226 Review.
-
Hypermethylation of Bmp2 and Fgfr2 Promoter Regions in Bone Marrow Mesenchymal Stem Cells Leads to Bone Loss in Prematurely Aged Mice.Aging Dis. 2024 Mar 24;16(2):1149-1168. doi: 10.14336/AD.2024.0324. Aging Dis. 2024. PMID: 38607734 Free PMC article.
-
Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2.PeerJ. 2022 Oct 5;10:e13862. doi: 10.7717/peerj.13862. eCollection 2022. PeerJ. 2022. PMID: 36217382 Free PMC article.
Cited by
-
Characterization of N6-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract.Int J Ophthalmol. 2024 Nov 18;17(11):1973-1986. doi: 10.18240/ijo.2024.11.02. eCollection 2024. Int J Ophthalmol. 2024. PMID: 39559306 Free PMC article.
-
Epigenetic Regulation of Bone Healing: Implications for Fracture Repair and Clinical Treatment Strategies.Yale J Biol Med. 2025 Jun 30;98(2):159-170. doi: 10.59249/HSYL8000. eCollection 2025 Jun. Yale J Biol Med. 2025. PMID: 40589933 Free PMC article. Review.
References
REFERENCES
-
- Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast‐osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. doi:10.3390/cells9092073
-
- Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl 3(Suppl 3):S131‐S139. doi:10.2215/CJN.04151206
-
- Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast‐derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522‐1530.
-
- Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast‐osteoclast interactions. Connect Tissue Res. 2018;59(2):99‐107. doi:10.1080/03008207.2017.1290085
-
- Park‐Min KH. Epigenetic regulation of bone cells. Connect Tissue Res. 2017;58(1):76‐89. doi:10.1080/03008207.2016.1177037
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous