Solar-Driven Conversion of CO2 to C2 Products by the 3d Transition Metal Intercalates of Layered Lead Iodides
- PMID: 38692649
- DOI: 10.1002/adma.202403651
Solar-Driven Conversion of CO2 to C2 Products by the 3d Transition Metal Intercalates of Layered Lead Iodides
Abstract
Photocatalytic CO2 reduction to high-value-added C2+ products presents significant challenges, which is attributed to the slow kinetics of multi-e- CO2 photoreduction and the high thermodynamic barrier for C-C coupling. Incorporating redox-active Co2+/Ni2+ cations into lead halide photocatalysts has high potentials to improve carrier transport and introduce charge polarized bimetallic sites, addressing the kinetic and thermodynamic issues, respectively. In this study, a coordination-driven synthetic strategy is developed to introduce 3d transition metals into the interlamellar region of layered organolead iodides with atomic precision. The resultant bimetallic halide hybrids exhibit selective photoreduction of CO2 to C2H5OH using H2O vapor at the evolution rates of 24.9-31.4 µmol g-1 h-1 and high selectivity of 89.5-93.6%, while pristine layered lead iodide yields only C1 products. Band structure calculations and photoluminescence studies indicate that the interlayer Co2+/Ni2+ species greatly contribute to the frontier orbitals and enhance exciton dissociation into free carriers, facilitating carrier transport between adjacent lead iodide layers. In addition, Bader charge distribution calculations and in situ experimental spectroscopic studies reveal that the asymmetric Ni-O-Pb bimetallic catalytic sites exhibit intrinsic charge polarization, promoting C-C coupling and leading to the formation of the key *OC-CHO intermediate.
Keywords: CO2 photoreduction; coordination polymers; crystal engineering; lead halide hybrids; photocatalysis.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Recent advances of metal active sites in photocatalytic CO2 reduction.Chem Sci. 2024 Aug 15;15(35):14081-103. doi: 10.1039/d4sc01978d. Online ahead of print. Chem Sci. 2024. PMID: 39156936 Free PMC article. Review.
-
Modulating Inorganic Dimensionality of Ultrastable Lead Halide Coordination Polymers for Photocatalytic CO2 Reduction to Ethanol.Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202316080. doi: 10.1002/anie.202316080. Epub 2024 Mar 7. Angew Chem Int Ed Engl. 2024. PMID: 38385586
-
Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO2 Photoreduction toward C2 Products.Acc Chem Res. 2023 Sep 19;56(18):2500-2513. doi: 10.1021/acs.accounts.3c00373. Epub 2023 Sep 1. Acc Chem Res. 2023. PMID: 37658473
-
Organolead Halide-Based Coordination Polymers: Intrinsic Stability and Photophysical Applications.Acc Chem Res. 2023 Feb 21;56(4):452-461. doi: 10.1021/acs.accounts.2c00687. Epub 2023 Jan 31. Acc Chem Res. 2023. PMID: 36719833
-
Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: a review.Mater Horiz. 2022 Feb 7;9(2):607-639. doi: 10.1039/d1mh01490k. Mater Horiz. 2022. PMID: 34897343 Review.
Cited by
-
Recent advances of metal active sites in photocatalytic CO2 reduction.Chem Sci. 2024 Aug 15;15(35):14081-103. doi: 10.1039/d4sc01978d. Online ahead of print. Chem Sci. 2024. PMID: 39156936 Free PMC article. Review.
References
-
- J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116, 12956.
-
- H. Huang, B. Pradhan, J. Hofkens, M. B. J. Roeffaers, J. A. Steele, ACS Energy Lett. 2020, 5, 1107.
-
- a) J. Hou, S. Cao, Y. Wu, Z. Gao, F. Liang, Y. Sun, Z. Lin, L. Sun, Chemistry 2017, 23, 9481;
-
- b) L.‐Y. Wu, Y.‐F. Mu, X.‐X. Guo, W. Zhang, Z.‐M. Zhang, M. Zhang, T.‐B. Lu, Angew. Chem., Int. Ed. 2019, 58, 9491.
-
- a) Y. Cho, A. M. Soufiani, J. S. Yun, J. Kim, D. S. Lee, J. Seidel, X. Deng, M. A. Green, S. Huang, A. W. Y. Ho‐Baillie, Adv. Energy Mater. 2018, 8, 1703392;
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous