Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 May 25:657:124182.
doi: 10.1016/j.ijpharm.2024.124182. Epub 2024 Apr 30.

Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS)

Affiliations
Free article
Review

Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS)

Clarence T Dhege et al. Int J Pharm. .
Free article

Abstract

Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 μm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.

Keywords: Acute respiratory distress syndrome (ARDS); Aerosol; Drug delivery systems; Nanoparticles; Pulmonary delivery.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources