Clarifying the four core effects of high-entropy materials
- PMID: 38698142
- DOI: 10.1038/s41570-024-00602-5
Clarifying the four core effects of high-entropy materials
Abstract
High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the 'four core effects' - high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects - which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials. Throughout the years, the effects have been examined rigorously, and their validity has been affirmed. This Perspective discusses the fundamental understanding of the four core effects in high-entropy materials and gives further insights to strengthen the understanding for these effects. All these clarifications are believed to be helpful in understanding low-to-high-entropy materials as well as to aid the design of materials when studying new compositions or pursuing their use in applications.
© 2024. Springer Nature Limited.
References
-
- Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). The first publication to introduce the concept of multi-principal elements in alloy design. - DOI
-
- Chen, T. K., Shun, T. T., Yeh, J. W. & Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193–200 (2004). - DOI
-
- Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004). The article that delivered the famous Cantor alloy and yielded an important conclusion: the total phase numbers in HEAs are much lower than the maximum equilibrium phase numbers allowed by the Gibbs phase rule. - DOI
-
- Yeh, J. W. et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533–2536 (2004). One of the earliest papers to investigate the microstructures and crystal structures of solid-solution alloys with multi-principal metallic elements. - DOI
-
- Huang, P. K., Yeh, J. W., Shun, T. T. & Chen, S. K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74–78 (2004). - DOI
Publication types
LinkOut - more resources
Full Text Sources