Virtual brain twins: from basic neuroscience to clinical use
- PMID: 38698901
- PMCID: PMC11065363
- DOI: 10.1093/nsr/nwae079
Virtual brain twins: from basic neuroscience to clinical use
Abstract
Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.
Keywords: brain disorder; inference; neuroscience; personalized modeling; virtual brain twin.
© The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
Figures



Similar articles
-
Principles and Operation of Virtual Brain Twins.IEEE Rev Biomed Eng. 2025 Apr 21;PP. doi: 10.1109/RBME.2025.3562951. Online ahead of print. IEEE Rev Biomed Eng. 2025. PMID: 40257892
-
Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators.Neural Netw. 2023 Jun;163:178-194. doi: 10.1016/j.neunet.2023.03.040. Epub 2023 Mar 31. Neural Netw. 2023. PMID: 37060871
-
The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread.Neuroimage. 2020 Aug 15;217:116839. doi: 10.1016/j.neuroimage.2020.116839. Epub 2020 May 7. Neuroimage. 2020. PMID: 32387625
-
Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides.Neural Regen Res. 2023 Jun;18(6):1165-1178. doi: 10.4103/1673-5374.357903. Neural Regen Res. 2023. PMID: 36453390 Free PMC article. Review.
-
[Neuroscience in the Courtroom: From responsibility to dangerousness, ethical issues raised by the new French law].Encephale. 2015 Oct;41(5):385-93. doi: 10.1016/j.encep.2014.08.014. Epub 2014 Oct 27. Encephale. 2015. PMID: 25439859 Review. French.
Cited by
-
Personalized brain models link cognitive decline progression to underlying synaptic and connectivity degeneration.Alzheimers Res Ther. 2025 Apr 5;17(1):74. doi: 10.1186/s13195-025-01718-6. Alzheimers Res Ther. 2025. PMID: 40188185 Free PMC article.
-
Dynamic causal modelling in probabilistic programming languages.J R Soc Interface. 2025 Jun;22(227):20240880. doi: 10.1098/rsif.2024.0880. Epub 2025 Jun 4. J R Soc Interface. 2025. PMID: 40460864 Free PMC article.
-
Modeling impairment of ionic regulation with extended Adaptive Exponential integrate-and-fire models.J Comput Neurosci. 2025 Mar;53(1):1-8. doi: 10.1007/s10827-025-00893-7. Epub 2025 Jan 23. J Comput Neurosci. 2025. PMID: 39847247 Free PMC article.
-
Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy.Netw Neurosci. 2024 Oct 1;8(3):673-696. doi: 10.1162/netn_a_00371. eCollection 2024. Netw Neurosci. 2024. PMID: 39355432 Free PMC article.
-
Therapeutic dose prediction of α5-GABA receptor modulation from simulated EEG of depression severity.PLoS Comput Biol. 2024 Dec 27;20(12):e1012693. doi: 10.1371/journal.pcbi.1012693. eCollection 2024 Dec. PLoS Comput Biol. 2024. PMID: 39729407 Free PMC article.
References
-
- Grieves MW. Virtually intelligent product systems: digital and physical twins. In: Flumerfelt S, Schwartz KG, Mavris D et al. (eds) Complex Systems Engineering: Theory and Practice. Reston, VA: American Institute of Aeronautics and Astronautics, 2019, 175–200.10.2514/5.9781624105654.0175.0200 - DOI
-
- Amunts K, Axer M, Bitsch L et al. The coming decade of digital brain research - a vision for neuroscience at the intersection of technology and computing (version 2.0). Zenodo; 2022, doi: 10.5281/zenodo.6630232.
-
- Kapteyn MG, Knezevic DJ, Huynh DB et al. Data-driven physics-based digital twins via a library of component-based reduced-order models. Int J Numer Meth Eng 2022; 123: 2986–3003.10.1002/nme.6423 - DOI
Publication types
LinkOut - more resources
Full Text Sources