The role of subunits in yeast DNA-dependent ribonucleic acid polymerase A
- PMID: 387028
- PMCID: PMC1161162
- DOI: 10.1042/bj1810301
The role of subunits in yeast DNA-dependent ribonucleic acid polymerase A
Abstract
The properties of RNA polymerase A, which lacked the subunits of 48 000, 37 000 and 16 000 mol. wt., were compared with those of RNA polymerase A by using native calf thymus DNA as the template. The results showed that: (1) the specific activity of RNA polymerase A was about one-third that of RNA polymerase A; (2) more than 80% of RNA polymerase A, but only about 25% of RNA polymerase A, made RNA; (3) initiation by RNA polymerase A, but not by RNA polymerase A, began after a lag of 2 min; (4) the temperature-dependence for productive binding to DNA was greater for RNA polymerase A; (5) the apparent Km for UTP was greater for RNA polymerase A. These results support the supposition that the subunits missing from RNA polymerase A are involved in DNA binding [Huet, Dezélée, Iborra, Buhler, Sentenac & Fromageot (1976) Biochimie 58, 71-80] and show also that the loss of these subunits affects the elongation reaction.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources