Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun 25:931:172848.
doi: 10.1016/j.scitotenv.2024.172848. Epub 2024 May 3.

Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring

Affiliations
Free article
Review

Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring

Mércia S Freire et al. Sci Total Environ. .
Free article

Abstract

Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.

Keywords: Detection; Heavy metals; Ions; Pathogens; Persistent organic compounds; Semiconductors nanocrystals.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors confirm that there are no conflicts of interest in this work.

LinkOut - more resources