Colossal Reversible Barocaloric Effects in a Plastic Crystal Mediated by Lattice Vibrations and Ion Diffusion
- PMID: 38704680
- PMCID: PMC11234397
- DOI: 10.1002/advs.202306488
Colossal Reversible Barocaloric Effects in a Plastic Crystal Mediated by Lattice Vibrations and Ion Diffusion
Abstract
Solid-state methods for cooling and heating promise a sustainable alternative to current compression cycles of greenhouse gases and inefficient fuel-burning heaters. Barocaloric effects (BCE) driven by hydrostatic pressure (p) are especially encouraging in terms of large adiabatic temperature changes (|ΔT| ≈ 10 K) and isothermal entropy changes (|ΔS| ≈ 100 J K-1 kg-1). However, BCE typically require large pressure shifts due to irreversibility issues, and sizeable |ΔT| and |ΔS| seldom are realized in a same material. Here, the existence of colossal and reversible BCE in LiCB11H12 is demonstrated near its order-disorder phase transition at ≈380 K. Specifically, for Δp ≈ 0.23 (0.10) GPa, |ΔSrev| = 280 (200) J K-1 kg-1 and |ΔTrev| = 32 (10) K are measured, which individually rival with state-of-the-art BCE figures. Furthermore, pressure shifts of the order of 0.1 GPa yield huge reversible barocaloric strengths of ≈2 J K-1 kg-1 MPa-1. Molecular dynamics simulations are performed to quantify the role of lattice vibrations, molecular reorientations, and ion diffusion on the disclosed BCE. Interestingly, lattice vibrations are found to contribute the most to |ΔS| while the diffusion of lithium ions, despite adding up only slightly to the entropy change, is crucial in enabling the molecular order-disorder phase transition.
Keywords: barocaloric effects; lithium diffusion; molecular dynamics simulations; orientational order–disorder phase transition; solid‐state refrigeration.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Colossal barocaloric effects in the complex hydride Li[Formula: see text]B[Formula: see text]H[Formula: see text].Sci Rep. 2021 Jun 7;11(1):11915. doi: 10.1038/s41598-021-91123-4. Sci Rep. 2021. PMID: 34099742 Free PMC article.
-
Colossal Barocaloric Effect near Ambient Temperature in 1-Dodecanol under a Low Pressure.J Phys Chem Lett. 2024 Jul 18;15(28):7141-7146. doi: 10.1021/acs.jpclett.4c01369. Epub 2024 Jul 3. J Phys Chem Lett. 2024. PMID: 38959420
-
Ultrasensitive barocaloric material for room-temperature solid-state refrigeration.Nat Commun. 2022 Apr 28;13(1):2293. doi: 10.1038/s41467-022-29997-9. Nat Commun. 2022. PMID: 35484158 Free PMC article.
-
Giant and Reversible Barocaloric Effect in Trinuclear Spin-Crossover Complex Fe3 (bntrz)6 (tcnset)6.Adv Mater. 2021 Mar;33(10):e2008076. doi: 10.1002/adma.202008076. Epub 2021 Feb 2. Adv Mater. 2021. PMID: 33527567 Review.
-
Materials with Giant Mechanocaloric Effects: Cooling by Strength.Adv Mater. 2017 Mar;29(11). doi: 10.1002/adma.201603607. Epub 2016 Dec 27. Adv Mater. 2017. PMID: 28026063 Review.
Cited by
-
Orientational Disorder and Molecular Correlations in Hybrid Organic-Inorganic Perovskites: From Fundamental Insights to Technological Applications.ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1428-1440. doi: 10.1021/acsami.4c12762. Epub 2024 Dec 24. ACS Appl Mater Interfaces. 2025. PMID: 39718191 Free PMC article.
-
Preliminary Broadband Dielectric Spectroscopy Insight into Compressed Orientationally Disordered Crystal-Forming Neopentyl Glycol (NPG).Materials (Basel). 2025 Jan 31;18(3):635. doi: 10.3390/ma18030635. Materials (Basel). 2025. PMID: 39942301 Free PMC article.
References
-
- Moya X., Mathur N. D., Science 2020, 370, 797. - PubMed
-
- Bergamini R., Jensen J. K., Elmegaard B., Energy 2019, 182, 110.
-
- Qu M., Abdelaziz O., Yin H., Energy Convers. Manage. 2014, 87, 175.
-
- Fernandez N., Hwang Y., Radermacher R., Int. J. Refrig. 2010, 33, 635.
-
- Mañosa L., Planes A., Acet M., J. Mater. Chem. A 2013, 1, 4925.
Grants and funding
LinkOut - more resources
Full Text Sources