Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun:175:108483.
doi: 10.1016/j.compbiomed.2024.108483. Epub 2024 Apr 24.

BC-QNet: A quantum-infused ELM model for breast cancer diagnosis

Affiliations

BC-QNet: A quantum-infused ELM model for breast cancer diagnosis

Anas Bilal et al. Comput Biol Med. 2024 Jun.

Abstract

The timely and accurate diagnosis of breast cancer is pivotal for effective treatment, but current automated mammography classification methods have their constraints. In this study, we introduce an innovative hybrid model that marries the power of the Extreme Learning Machine (ELM) with FuNet transfer learning, harnessing the potential of the MIAS dataset. This novel approach leverages an Enhanced Quantum-Genetic Binary Grey Wolf Optimizer (Q-GBGWO) within the ELM framework, elevating its performance. Our contributions are twofold: firstly, we employ a feature fusion strategy to optimize feature extraction, significantly enhancing breast cancer classification accuracy. The proposed methodological motivation stems from optimizing feature extraction for improved breast cancer classification accuracy. The Q-GBGWO optimizes ELM parameters, demonstrating its efficacy within the ELM classifier. This innovation marks a considerable advancement beyond traditional methods. Through comparative evaluations against various optimization techniques, the exceptional performance of our Q-GBGWO-ELM model becomes evident. The classification accuracy of the model is exceptionally high, with rates of 96.54 % for Normal, 97.24 % for Benign, and 98.01 % for Malignant classes. Additionally, the model demonstrates a high sensitivity with rates of 96.02 % for Normal, 96.54 % for Benign, and 97.75 % for Malignant classes, and it exhibits impressive specificity with rates of 96.69 % for Normal, 97.38 % for Benign, and 98.16 % for Malignant classes. These metrics are reflected in its ability to classify three different types of breast cancer accurately. Our approach highlights the innovative integration of image data, deep feature extraction, and optimized ELM classification, marking a transformative step in advancing early breast cancer detection and enhancing patient outcomes.

Keywords: Breast cancer diagnosis; Enhanced diagnostic accuracy; Extreme learning machine (ELM); Feature fusion; Mammography.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

References

Publication types

LinkOut - more resources