Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug;194(8):1443-1457.
doi: 10.1016/j.ajpath.2024.04.004. Epub 2024 May 3.

The Role of Pericytes in Lipopolysaccharide-Induced Murine Acute Respiratory Distress Syndrome

Affiliations
Free article

The Role of Pericytes in Lipopolysaccharide-Induced Murine Acute Respiratory Distress Syndrome

Bartosz Mierzejewski et al. Am J Pathol. 2024 Aug.
Free article

Abstract

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. A murine model of lipopolysaccharide (LPS)-induced resolving ARDS was used to study their role in ARDS. The development of ARDS was confirmed after LPS instillation, which was resolved 14 days after onset. Immunofluorescence and flow cytometry showed early expansion of neural-glial antigen 2+ β-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ β-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, these data indicate that lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.

PubMed Disclaimer

Conflict of interest statement

Disclosure Statement None declared.

Publication types

Substances

LinkOut - more resources