Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep;30(6):1078-1083.
doi: 10.1177/10781552241251757. Epub 2024 May 5.

Advancements in the use of nanopharmaceuticals for cancer treatment

Affiliations
Review

Advancements in the use of nanopharmaceuticals for cancer treatment

Ismail Bennani et al. J Oncol Pharm Pract. 2024 Sep.

Abstract

Objective: Advances in nanotechnology make it possible to specifically target therapies to cancer cells and neoplasms, guide the surgical resection of tumors, and optimize the effectiveness of radiological treatments. This research article provides a concise synthesis of current knowledge in the field of galenic pharmacy focused on targeted drug delivery in oncology. This research article synthesizes current knowledge in galenic pharmacy, focusing on targeted drug delivery in oncology and reviewing recent advancements in nanopharmaceuticals for cancer treatment.

Data source: The data for this review are derived from a comprehensive analysis of the most cited scientific literature (Pubmed). Recent studies, clinical trials, and technological breakthroughs related to nanopharmaceuticals have been rigorously examined. This diverse source ensures a comprehensive representation of the latest developments in the field.

Summary of data: The results highlight the emergence of nanopharmaceuticals as a promising approach to cancer treatment. The most common in oncology remain liposomes, nanopolymers, and nanocrystals. From a galenic point of view, these three forms offer a wide range of improvements compared to conventional forms such as improvement in solubility as well as stability. The same observation is in the clinic where treatment response rates are significantly improved. The most advantageous form will depend on the specific characteristics of each patient and each type of cancer. The precise design of nanocarriers allows for targeted drug delivery, enhancing therapeutic efficacy while reducing side effects. Concrete examples of clinical applications are presented, illustrating the practical potential of these advancements.

Conclusion: In conclusion, this review provides a holistic overview of recent developments in galenic pharmacy for targeted drug delivery in oncology. The stability of nanocarriers is a crucial challenge because it conditions the effectiveness and safety of the drugs transported. Environmental and biological variations encountered in the body can compromise this stability, jeopardizing the therapeutic effectiveness and safety of treatments. Likewise, personalized approaches are essential to address interindividual variations in treatment response, as well as patients' pharmacogenomic profiles, in order to optimize therapeutic effectiveness and minimize adverse effects.

Keywords: Oncology; cancer; drug delivery; nanocarriers; nanopharmaceutical; target; therapeutic efficacy.

PubMed Disclaimer

Conflict of interest statement

Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Similar articles

Cited by