Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion
- PMID: 3870876
- DOI: 10.1093/oxfordjournals.molbev.a040371
Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion
Abstract
Simple but exact statistical tests for detecting a cluster of associated nucleotide changes in DNA are presented. The tests are based on the linear distribution of a set of s sites among a total of n sites, where the s sites may be the variable sites, sites of insertion/deletion, or categorized in some other way. These tests are especially useful for detecting gene conversion and intragenic recombination in a sample of DNA sequences. In this case, the sites of interest are those that correspond to particular ways of splitting the sequences into two groups (e.g., sequences A and D vs. sequences B, C, and E-J). Each such split is termed a phylogenetic partition. Application of these methods to a well-documented case of gene conversion in human gamma-globin genes shows that sites corresponding to two of the three observed partitions are significantly clustered, whereas application to hominoid mitochondrial DNA sequences--among which no recombination is expected to occur--shows no evidence of such clustering. This indicates that clustering of partition-specific sites is largely due to intragenic recombination or gene conversion. Alternative hypotheses explaining the observed clustering of sites, such as biased selection or mutation, are discussed.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
