Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling
- PMID: 38713518
- PMCID: PMC11382884
- DOI: 10.1172/jci.insight.177002
Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Keywords: Immunology; Innate immunity; Neurodegeneration; Neuroscience.
Conflict of interest statement
Figures
Update of
-
Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling.bioRxiv [Preprint]. 2023 Jul 24:2023.07.21.550097. doi: 10.1101/2023.07.21.550097. bioRxiv. 2023. Update in: JCI Insight. 2024 May 7;9(11):e177002. doi: 10.1172/jci.insight.177002. PMID: 37546744 Free PMC article. Updated. Preprint.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
