Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 1;165(11):2494-2506.
doi: 10.1097/j.pain.0000000000003269. Epub 2024 May 8.

Probing white matter microstructure in youth with chronic pain and its relation to catastrophizing using neurite orientation dispersion and density imaging

Affiliations

Probing white matter microstructure in youth with chronic pain and its relation to catastrophizing using neurite orientation dispersion and density imaging

Inge Timmers et al. Pain. .

Abstract

Chronic pain is common in young people and can have a major life impact. Despite the burden of chronic pain, mechanisms underlying chronic pain development and persistence are still poorly understood. Specifically, white matter (WM) connectivity has remained largely unexplored in pediatric chronic pain. Using diffusion-weighted imaging, this study examined WM microstructure in adolescents (age M = 15.8 years, SD = 2.8 years) with chronic pain (n = 44) compared with healthy controls (n = 24). Neurite orientation dispersion and density imaging modeling was applied, and voxel-based whole-white-matter analyses were used to obtain an overview of potential alterations in youth with chronic pain and tract-specific profile analyses to evaluate microstructural profiles of tracts of interest more closely. Our main findings are that (1) youth with chronic pain showed widespread elevated orientation dispersion compared with controls in several tracts, indicative of less coherence; (2) signs of neurite density tract-profile alterations were observed in several tracts of interest, with mainly higher density levels in patients; and (3) several WM microstructural alterations were associated with pain catastrophizing in the patient group. Implicated tracts include both those connecting cortical and limbic structures (uncinate fasciculus, cingulum, anterior thalamic radiation), which were associated with pain catastrophizing, as well as sensorimotor tracts (corticospinal tract). By identifying alterations in the biologically informative WM microstructural metrics orientation dispersion and neurite density, our findings provide important and novel mechanistic insights for understanding the pathophysiology underlying chronic pain. Taken together, the data support alterations in fiber organization as a meaningful characteristic, contributing process to the chronic pain state.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors have no conflicts of interest to declare.

Similar articles

Cited by

References

    1. Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 2003;20(2):870–888. - PubMed
    1. Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 2016;141:556–572. - PubMed
    1. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–1078. - PMC - PubMed
    1. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008;34(1):51–61. - PubMed
    1. Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, Jbabdi S, Andersson JLR. Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. Neuroimage 2019;184:801–812. - PMC - PubMed

LinkOut - more resources