Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May;629(8011):329-334.
doi: 10.1038/s41586-024-07355-7. Epub 2024 May 8.

All-optical subcycle microscopy on atomic length scales

Affiliations

All-optical subcycle microscopy on atomic length scales

T Siday et al. Nature. 2024 May.

Abstract

Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities1. By exploiting linear interaction with tip-confined evanescent light fields2, near-field microscopy3,4 has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion5-19. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution20. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light-matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials.

PubMed Disclaimer

References

    1. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). - PubMed - DOI
    1. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992). - PubMed - DOI
    1. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995). - PubMed - DOI
    1. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999). - DOI
    1. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007). - PubMed - DOI

Publication types

LinkOut - more resources