Comprehensive strategies for controlling Listeria monocytogenes biofilms on food-contact surfaces
- PMID: 38720587
- DOI: 10.1111/1541-4337.13348
Comprehensive strategies for controlling Listeria monocytogenes biofilms on food-contact surfaces
Abstract
Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.
Keywords: Listeria monocytogenes; biofilms; control methods; cross‐contamination; food processing facilities.
© 2024 The Authors. Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.
Similar articles
-
Unlocking the Hidden Threat: Impacts of Surface Defects on the Efficacy of Sanitizers Against Listeria monocytogenes Biofilms on Food-contact Surfaces in Tree Fruit Packing Facilities.J Food Prot. 2024 Feb;87(2):100213. doi: 10.1016/j.jfp.2023.100213. Epub 2024 Jan 2. J Food Prot. 2024. PMID: 38176613
-
Degradation of Listeria monocytogenes biofilm by phages belonging to the genus Pecentumvirus.Appl Environ Microbiol. 2024 Mar 20;90(3):e0106223. doi: 10.1128/aem.01062-23. Epub 2024 Feb 5. Appl Environ Microbiol. 2024. PMID: 38315006 Free PMC article.
-
Tracking of Listeria monocytogenes in meat establishment using Whole Genome Sequencing as a food safety management tool: A proof of concept.Int J Food Microbiol. 2017 Sep 18;257:157-164. doi: 10.1016/j.ijfoodmicro.2017.06.015. Epub 2017 Jun 20. Int J Food Microbiol. 2017. PMID: 28666130
-
An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.Crit Rev Food Sci Nutr. 2013;53(8):801-17. doi: 10.1080/10408398.2011.561378. Crit Rev Food Sci Nutr. 2013. PMID: 23768144 Review.
-
Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health.J Food Prot. 2014 Jan;77(1):150-70. doi: 10.4315/0362-028X.JFP-13-150. J Food Prot. 2014. PMID: 24406014 Review.
Cited by
-
Anti-Bacterial and Anti-Biofilm Activities of Essential Oil from Citrus reticulata Blanco cv. Tankan Peel Against Listeria monocytogenes.Foods. 2024 Nov 28;13(23):3841. doi: 10.3390/foods13233841. Foods. 2024. PMID: 39682912 Free PMC article.
-
Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review.Compr Rev Food Sci Food Saf. 2025 Jan;24(1):e70083. doi: 10.1111/1541-4337.70083. Compr Rev Food Sci Food Saf. 2025. PMID: 39736097 Free PMC article.
-
The Virulence Factor LLO of Listeria monocytogenes Can Hamper Biofilm Formation and Indirectly Suppress Phage-Lytic Effect.Foods. 2025 Jul 22;14(15):2554. doi: 10.3390/foods14152554. Foods. 2025. PMID: 40807491 Free PMC article.
References
REFERENCES
-
- Angelo, K. M., Conrad, A. R., Saupe, A., Dragoo, H., West, N., Sorenson, A., Barnes, A., Doyle, M., Beal, J., Jackson, K. A., Stroika, S., Tarr, C., Kucerova, Z., Lance, S., Gould, L. H., Wise, M., & Jackson, B. R. (2017). Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015. Epidemiology and Infection, 145(5), 848–856. https://doi.org/10.1017/S0950268816003083
-
- Ayebah, B., Hung, Y. C., & Frank, J. F. (2005). Enhancing the bactericidal effect of electrolyzed water on Listeria monocytogenes biofilms formed on stainless steel. Journal of Food Protection, 68(7), 1375–1380. https://doi.org/10.4315/0362‐028x‐68.7.1375
-
- Ban, G. H., Park, S. H., Kim, S. O., Ryu, S., & Kang, D. H. (2012). Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel. International Journal of Food Microbiology, 157(2), 218–223. https://doi.org/10.1016/j.ijfoodmicro.2012.05.006
-
- Ban, G. H., Yoon, H., & Kang, D. H. (2014). A comparison of saturated steam and superheated steam for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel. Food Control, 40, 344–350. https://doi.org/10.1016/j.foodcont.2013.12.017
-
- Bansal, M., Nannapaneni, R., Sharma, C. S., & Kiess, A. (2018). Listeria monocytogenes response to sublethal chlorine induced oxidative stress on homologous and heterologous stress adaptation. Frontiers in Microbiology, 9, 2050. https://doi.org/10.3389/fmicb.2018.02050
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources