Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 May 8;14(21):14919-14933.
doi: 10.1039/d4ra01747a. eCollection 2024 May 2.

Advancements in double decarboxylative coupling reactions of carboxylic acids

Affiliations
Review

Advancements in double decarboxylative coupling reactions of carboxylic acids

Farnaz Behmagham et al. RSC Adv. .

Abstract

The double decarboxylative coupling reaction between two (similar or different) molecules of carboxylic acids is an emerging area that has gained considerable attention as a new avenue for forging carbon-carbon bonds. Since this synthetic strategy only utilizes carboxylic acids as easily accessible, non-toxic and stable starting materials, and extrudes carbon dioxide (CO2) as the only waste by-product, it can be considered as an environmentally benign alternative to traditional coupling reactions which mainly rely on the use of toxic organic halides or organometallic reagents. The aim of this review is to highlight the recent advances and developments in this exciting new field that may serve as inspiration for future research to mature it.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Double decarboxylative coupling reactions of carboxylic acids.
Scheme 1
Scheme 1. (a) Ag-catalyzed double decarboxylative coupling of (hetero)benzylic carboxylic acids 1; (b) a plausible mechanism for the formation of (hetero)aryl-substituted ethanes 2.
Scheme 2
Scheme 2. Wan's synthesis of 1,1,2,2-tetrafluoro-1,2-diarylethanes 4.
Scheme 3
Scheme 3. Selected examples of the Cu/Ag-catalyzed decarboxylative alkenylation of aliphatic carboxylic acids 5 with cinnamic acids 6.
Scheme 4
Scheme 4. Mechanism proposed to explain the formation of β-alkyl styrenes 7.
Scheme 5
Scheme 5. Cu/Ag-catalyzed double decarboxylative cross-coupling reaction between aliphatic carboxylic acids 8 and phenylpropiolic acid 9.
Scheme 6
Scheme 6. (a) Larrosa's synthesis of symmetrical biaryls 12; (b) suggested mechanism for decarboxylative homocoupling of hetero(aromatic) carboxylic acids 11.
Scheme 7
Scheme 7. Cu-catalyzed decarboxylative homocoupling of ortho-nitrobenzoic acids 13.
Scheme 8
Scheme 8. Tan–Deng's synthesis of unsymmetrical biaryls 17.
Scheme 9
Scheme 9. Su's synthesis of unsymmetrical biaryls 20.
Scheme 10
Scheme 10. Synthesis of biaryls 3 through Pd-catalyzed decarboxylative cross-dehydrogenative coupling between two different benzoic acids 21 and 22.
Scheme 11
Scheme 11. Ag-catalyzed double-decarboxylative cross-coupling of aromatic α-keto acids 24 with cinnamic acids 25.
Scheme 12
Scheme 12. Plausible mechanism for the Ag-catalyzed synthesis of chalcones 26.
Scheme 13
Scheme 13. Fe-catalyzed double decarboxylative cross-coupling between 2-oxoacetic acids 27 and cinnamic acid derivatives 28.
Scheme 14
Scheme 14. Ir/Pd-catalyzed double decarboxylative cross-coupling of α-keto acid derivatives 1 with α,β-unsaturated acids 2.
Scheme 15
Scheme 15. Proposed mechanism for the reaction in Scheme 14.
Scheme 16
Scheme 16. Li–Xiang's synthesis of 1,2-diketones 34.
Scheme 17
Scheme 17. Cheng's synthesis of ynones 37.
Scheme 18
Scheme 18. Ag/Cu-promoted decarboxylative alkynylation of 2-nitrobenzoic acids 38 with arylpropynoic acids 39.
Scheme 19
Scheme 19. Proposed mechanism for the formation of 1-aryl-2-(2-nitrophenyl)acetylenes 40.
Scheme 20
Scheme 20. Cu-catalyzed oxidative decarboxylative homocoupling of aryl propiolic acids 41, developed by Lang.
Scheme 21
Scheme 21. Mechanism proposed to explain the 1,4-diarylsubstituted 1,3-diynes 42 synthesis.
Scheme 22
Scheme 22. CuI/phen-catalyzed decarboxylative homocoupling of (hetero)aryl propiolic acids 43.
Scheme 23
Scheme 23. Ghosh–Chattopadhyay's synthesis of 1,4-di(hetero)arylsubstituted 1,3-diynes 45.
Scheme 24
Scheme 24. Photoinduced Cu-catalyzed decarboxylative homocoupling of (hetero)aryl propiolic acids 47.
Scheme 25
Scheme 25. Plausible mechanism for the formation of 1,4-di(hetero)arylsubstituted 1,3-diynes 48.

References

    1. Selected reviews:

    2. Rodríguez N. Goossen L. J. Chem. Soc. Rev. 2011;40:5030–5048. - PubMed
    3. Patra T. Maiti D. Chem.–Eur. J. 2017;23:7382–7401. - PubMed
    4. Zhang T. Wang N. X. Xing Y. J. Org. Chem. 2018;83:7559–7565. - PubMed
    5. Perry G. J. Larrosa I. Eur. J. Org. Chem. 2017:3517–3527. - PMC - PubMed
    6. Salman N. A. A. Adhab A. H. Bahir H. Sami M. H. sadeghzadeh R. Chem. Rev. Lett. 2023;6:139–149.
    7. Tariq H. Qassem T. A. Bashir H. Behmagham F. Shahimi F. Chem. Rev. Lett. 2023;6:235–244.
    8. Salman N. A. A. Adhab A. H. Bahir H. Sami M. H. sadeghzadeh R. Chem. Rev. Lett. 2023;6:139–149.
    9. Mahmood E. A. Azizi B. Majedi S. Chem. Rev. Lett. 2020;3:2–8.
    10. Majedi S. Majedi S. Behmagham F. Chem. Rev. Lett. 2019;2:187–192.
    1. Selected reviews:

    2. Hosseinian A. Nezhad P. D. K. Ahmadi S. Rahmani Z. Monfared A. J. Sulfur Chem. 2019;40:88–112.
    3. Sharma R. Yadav M. R. Org. Biomol. Chem. 2021;19:5476–5500. - PubMed
    1. Selected reviews:

    2. Kotha S. Lahiri K. Kashinath D. Tetrahedron. 2002;58:9633–9695.
    3. Corbet J. P. Mignani G. Chem. Rev. 2006;106:2651–2710. - PubMed
    4. Shi W. Liu C. Lei A. Chem. Soc. Rev. 2011;40:2761–2776. - PubMed
    5. Johansson Seechurn C. C. Kitching M. O. Colacot T. J. Snieckus V. Angew. Chem., Int. Ed. Engl. 2012;51:5062–5085. - PubMed
    6. Sarvestani M. R. J. Mert N. Vessally E. J. Chem. Lett. 2020;1:93–102.
    1. Selected reviews:

    2. Hosseinian A. Nasab F. A. H. Ahmadi S. Rahmani Z. Vessally E. RSC Adv. 2018;8:26383–26398. - PMC - PubMed
    3. Arshadi S. Ebrahimiasl S. Hosseinian A. Monfared A. Vessally E. RSC Adv. 2019;9:8964–8976. - PMC - PubMed
    4. Monfared A. Ebrahimiasl S. Babazadeh M. Arshadi S. Vessally E. J. Fluorine Chem. 2019;220:24–34.
    5. Li J. Li L. Vessally E. J. Chin. Chem. Soc. 2021;68:13–26.
    1. Selected reviews:

    2. Hosseinian A. Farshbaf S. Fekri L. Z. Nikpassand M. Vessally E. Top. Curr. Chem. 2018;376:1–19. - PubMed
    3. Peng W. Vessally E. Arshadi S. Monfared A. Hosseinian A. Edjlali L. Top. Curr. Chem. 2019;377:1–22. - PubMed
    4. Hosseinian A. Ahmadi S. Nasab F. A. H. Mohammadi R. Vessally E. Top. Curr. Chem. 2018;376:1–32. - PubMed
    5. Söğütlü I. Mahmood E. A. Shendy S. A. Ebrahimiasl S. Vessally E. RSC Adv. 2021;11:2112–2125. - PMC - PubMed
    6. Saraswat S. K. Seemaladinne R. Zaini H. Ahmad N. Ahmad N. Vessally E. RSC Adv. 2023;13:13642–13654. - PMC - PubMed