Asymmetric Synthesis of Chiral 2-Cyclohexenones with Quaternary Stereocenters via Ene-Reductase Catalyzed Desymmetrization of 2,5-Cyclohexadienones
- PMID: 38721374
- PMCID: PMC11075021
- DOI: 10.1021/acscatal.4c00276
Asymmetric Synthesis of Chiral 2-Cyclohexenones with Quaternary Stereocenters via Ene-Reductase Catalyzed Desymmetrization of 2,5-Cyclohexadienones
Abstract
Stereoselective synthesis of quaternary stereocenters represents a significant challenge in organic chemistry. Herein, we describe the use of ene-reductases OPR3 and YqjM for the efficient asymmetric synthesis of chiral 4,4-disubstituted 2-cyclohexenones via desymmetrizing hydrogenation of prochiral 4,4-disubstituted 2,5-cyclohexadienones. This transformation breaks the symmetry of the cyclohexadienone substrates, generating valuable quaternary stereocenters with high enantioselectivities (ee, up to >99%). The mechanistic causes for the observed high enantioselectivities were investigated both experimentally (stopped-flow kinetics) as well as theoretically (quantum mechanics/molecular mechanics calculations). The synthetic potential of the resulting chiral enones was demonstrated in several diversification reactions in which the stereochemical integrity of the quaternary stereocenter could be preserved.
© 2024 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures








References
LinkOut - more resources
Full Text Sources