Rethinking eco-evo studies of gene expression for non-model organisms in the genomic era
- PMID: 38721834
- DOI: 10.1111/mec.17378
Rethinking eco-evo studies of gene expression for non-model organisms in the genomic era
Abstract
Recent advances in genomic technology, including the rapid development of long-read sequencing technology and single-cell RNA-sequencing methods, are poised to significantly expand the kinds of studies that are feasible in ecological genomics. In this perspective, we review these new technologies and discuss their potential impact on gene expression studies in non-model organisms. Although traditional RNA-sequencing methods have been an extraordinarily powerful tool to apply functional genomics in an ecological context, bulk RNA-seq approaches often rely on de novo transcriptome assembly, and cannot capture expression changes in rare cell populations or distinguish shifts in cell type abundance. Advancements in genome assembly technology, particularly long-read sequencing, and improvements in the scalability of single-cell RNA-sequencing (scRNA-seq) offer unprecedented resolution in understanding cellular heterogeneity and gene regulation. We discuss the potential of these technologies to enable disentangling differential gene regulation from cell type composition differences and uncovering subtle expression patterns masked by bulk RNA-seq. The integration of these approaches provides a more nuanced understanding of the ecological and evolutionary dynamics of gene expression, paving the way for refined models and deeper insights into the generation of biodiversity.
Keywords: RNA‐seq; gene expression; genome assembly; single‐cell sequencing.
© 2024 John Wiley & Sons Ltd.
Similar articles
-
DiSC: a statistical tool for fast differential expression analysis of individual-level single-cell RNA-seq data.Bioinformatics. 2025 Jun 2;41(6):btaf327. doi: 10.1093/bioinformatics/btaf327. Bioinformatics. 2025. PMID: 40444783 Free PMC article.
-
MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.Brief Bioinform. 2022 Nov 19;23(6):bbac430. doi: 10.1093/bib/bbac430. Brief Bioinform. 2022. PMID: 36208175 Free PMC article.
-
Single-cell RNA sequencing in pediatric research: Focusing on differentiation trajectories and immune microenvironment of neuroblastoma.Pediatr Discov. 2024 May 23;2(3):e61. doi: 10.1002/pdi3.61. eCollection 2024 Sep. Pediatr Discov. 2024. PMID: 40625458 Free PMC article. Review.
-
Enabling scalable single-cell transcriptomic analysis through distributed computing with Apache spark.Sci Rep. 2025 Jul 29;15(1):27713. doi: 10.1038/s41598-025-12897-5. Sci Rep. 2025. PMID: 40731055 Free PMC article.
-
Novel insights into kidney disease: the scRNA-seq and spatial transcriptomics approaches: a literature review.BMC Nephrol. 2025 Apr 8;26(1):181. doi: 10.1186/s12882-025-04103-5. BMC Nephrol. 2025. PMID: 40200175 Free PMC article. Review.
Cited by
-
Cell type-specific immune regulation under symbiosis in a facultatively symbiotic coral.ISME J. 2025 Jan 2;19(1):wraf132. doi: 10.1093/ismejo/wraf132. ISME J. 2025. PMID: 40569035 Free PMC article.
References
REFERENCES
-
- Adams, N. E., & Edmands, S. (2023). Genomic recovery lags behind demographic recovery in bottlenecked populations of the Channel Island fox, Urocyon littoralis. Molecular Ecology, 32(15), 4151–4164. https://doi.org/10.1111/mec.17025
-
- Almanzar, N., Antony, J., Baghel, A. S., Bakerman, I., Bansal, I., Barres, B. A., Beachy, P. A., Berdnik, D., Bilen, B., Brownfield, D., Cain, C., Chan, C. K. F., Chen, M. B., Clarke, M. F., Conley, S. D., Darmanis, S., Demers, A., Demir, K., de Morree, A., … The Tabula Muris Consortium. (2020). A single‐cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 583(7817), 590–595. https://doi.org/10.1038/s41586‐020‐2496‐1
-
- Altenhoff, A. M., Glover, N. M., & Dessimoz, C. (2019). Inferring orthology and paralogy. Methods in Molecular Biology (Clifton, N.J.), 1910, 149–175. https://doi.org/10.1007/978‐1‐4939‐9074‐0_5
-
- Altenhoff, A. M., Studer, R. A., Robinson‐Rechavi, M., & Dessimoz, C. (2012). Resolving the Ortholog conjecture: Orthologs tend to Be weakly, but significantly, more similar in function than paralogs. PLoS Computational Biology, 8(5), e1002514. https://doi.org/10.1371/journal.pcbi.1002514
-
- Amezquita, R. A., Lun, A. T. L., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Marini, F., Rue‐Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M. L., Huber, W., Morgan, M., Gottardo, R., & Hicks, S. C. (2020). Orchestrating single‐cell analysis with Bioconductor. Nature Methods, 17(2), 137–145. https://doi.org/10.1038/s41592‐019‐0654‐x
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources