Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;76(10):788-802.
doi: 10.1002/iub.2829. Epub 2024 May 9.

PHLDA2 overexpression facilitates senescence and apoptosis via the mitochondrial route in human nucleus pulposus cells by regulating Wnt/β-catenin signalling pathway

Affiliations

PHLDA2 overexpression facilitates senescence and apoptosis via the mitochondrial route in human nucleus pulposus cells by regulating Wnt/β-catenin signalling pathway

Xian Chang et al. IUBMB Life. 2024 Oct.

Abstract

Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-β-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1β-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/β-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1β-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/β-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.

Keywords: PHLDA2; apoptosis; intervertebral disc degeneration; nucleus pulposus cells; senescence.

PubMed Disclaimer

Similar articles

References

REFERENCES

    1. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990‐2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–1602.
    1. de Schepper EI, Damen J, van Meurs JB, Ginai AZ, Popham M, Hofman A, et al. The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features. Spine (Phila Pa 1976). 2010;35(5):531–536.
    1. Colombier P, Clouet J, Hamel O, Lescaudron L, Guicheux J. The lumbar intervertebral disc: from embryonic development to degeneration. Joint Bone Spine. 2014;81(2):125–129.
    1. Bian Q, Ma L, Jain A, Crane JL, Kebaish K, Wan M, et al. Mechanosignaling activation of TGFbeta maintains intervertebral disc homeostasis. Bone Res. 2017;5:17008.
    1. Chu G, Shi C, Lin J, Wang S, Wang H, Liu T, et al. Biomechanics in annulus fibrosus degeneration and regeneration. Adv Exp Med Biol. 2018;1078:409–420.

Publication types

MeSH terms

LinkOut - more resources