Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 6;111(6):1061-1083.
doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.

Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions

Eileen O Dareng  1 Simon G Coetzee  2 Jonathan P Tyrer  3 Pei-Chen Peng  2 Will Rosenow  4 Stephanie Chen  5 Brian D Davis  5 Felipe Segato Dezem  2 Ji-Heui Seo  6 Robbin Nameki  7 Alberto L Reyes  2 Katja K H Aben  8 Hoda Anton-Culver  9 Natalia N Antonenkova  10 Gerasimos Aravantinos  11 Elisa V Bandera  12 Laura E Beane Freeman  13 Matthias W Beckmann  14 Alicia Beeghly-Fadiel  15 Javier Benitez  16 Marcus Q Bernardini  17 Line Bjorge  18 Amanda Black  19 Natalia V Bogdanova  20 Kelly L Bolton  21 James D Brenton  22 Agnieszka Budzilowska  23 Ralf Butzow  24 Hui Cai  15 Ian Campbell  25 Rikki Cannioto  26 Jenny Chang-Claude  27 Stephen J Chanock  13 Kexin Chen  28 Georgia Chenevix-Trench  29 AOCS Group  30 Yoke-Eng Chiew  31 Linda S Cook  32 Anna DeFazio  33 Joe Dennis  1 Jennifer A Doherty  34 Thilo Dörk  35 Andreas du Bois  36 Matthias Dürst  37 Diana M Eccles  38 Gabrielle Ene  17 Peter A Fasching  14 James M Flanagan  39 Renée T Fortner  40 Florentia Fostira  41 Aleksandra Gentry-Maharaj  42 Graham G Giles  43 Marc T Goodman  44 Jacek Gronwald  45 Christopher A Haiman  46 Niclas Håkansson  47 Florian Heitz  48 Michelle A T Hildebrandt  49 Estrid Høgdall  50 Claus K Høgdall  51 Ruea-Yea Huang  52 Allan Jensen  53 Michael E Jones  54 Daehee Kang  55 Beth Y Karlan  56 Anthony N Karnezis  57 Linda E Kelemen  58 Catherine J Kennedy  59 Elza K Khusnutdinova  60 Lambertus A Kiemeney  61 Susanne K Kjaer  62 Jolanta Kupryjanczyk  23 Marilyne Labrie  63 Diether Lambrechts  64 Melissa C Larson  65 Nhu D Le  66 Jenny Lester  56 Lian Li  28 Jan Lubiński  45 Michael Lush  1 Jeffrey R Marks  67 Keitaro Matsuo  68 Taymaa May  17 John R McLaughlin  69 Iain A McNeish  70 Usha Menon  42 Stacey Missmer  71 Francesmary Modugno  72 Melissa Moffitt  73 Alvaro N Monteiro  74 Kirsten B Moysich  75 Steven A Narod  76 Tu Nguyen-Dumont  77 Kunle Odunsi  78 Håkan Olsson  79 N Charlotte Onland-Moret  80 Sue K Park  81 Tanja Pejovic  82 Jennifer B Permuth  74 Anna Piskorz  22 Darya Prokofyeva  83 Marjorie J Riggan  84 Harvey A Risch  85 Cristina Rodríguez-Antona  86 Mary Anne Rossing  87 Dale P Sandler  88 V Wendy Setiawan  46 Kang Shan  89 Honglin Song  90 Melissa C Southey  91 Helen Steed  92 Rebecca Sutphen  93 Anthony J Swerdlow  94 Soo Hwang Teo  95 Kathryn L Terry  96 Pamela J Thompson  97 Liv Cecilie Vestrheim Thomsen  18 Linda Titus  98 Britton Trabert  19 Ruth Travis  99 Shelley S Tworoger  74 Ellen Valen  18 Els Van Nieuwenhuysen  100 Digna Velez Edwards  101 Robert A Vierkant  65 Penelope M Webb  102 OPAL Study Group  102 Clarice R Weinberg  103 Rayna Matsuno Weise  104 Nicolas Wentzensen  19 Emily White  105 Stacey J Winham  106 Alicja Wolk  107 Yin-Ling Woo  108 Anna H Wu  109 Li Yan  110 Drakoulis Yannoukakos  41 Nur Zeinomar  12 Wei Zheng  15 Argyrios Ziogas  9 Andrew Berchuck  84 Ellen L Goode  111 David G Huntsman  112 Celeste L Pearce  113 Susan J Ramus  114 Thomas A Sellers  115 Ovarian Cancer Association Consortium (OCAC)Matthew L Freedman  6 Kate Lawrenson  7 Joellen M Schildkraut  116 Dennis Hazelett  117 Jasmine T Plummer  5 Siddhartha Kar  118 Michelle R Jones  2 Paul D P Pharoah  119 Simon A Gayther  120
Affiliations

Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions

Eileen O Dareng et al. Am J Hum Genet. .

Abstract

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.

Keywords: GWAS; epithelial ovarian cancer risk; fine mapping; functional mechanisms.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Figures

Figure 1
Figure 1
Study design for the identification and functional analysis of common low penetrance risk variants for epithelial ovarian cancer (EOC) (A) Study design: HGSOC, high-grade serous ovarian cancer; ENOC, endometrioid ovarian cancer; LGSOC, low-grade serous ovarian cancer; CCOC, clear-cell ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancer; fine mapping of risk regions and epigenomic annotation to identify credible causal risk variants (CCVs) at each risk locus; cell-type-specific epigenomic enrichment and partitioning heritability analysis; expression QTL-based approaches to identify candidate susceptibility genes in EOC risk regions; and 3D looping analysis to identify gene-CCV interactions at EOC risk loci. (B) Genome-wide association analyses identified five novel EOC risk loci at p < 5 × 10−8 for different EOC histotypes; bubble plot illustrates both the effect size and the statistical significance value for each region by histotype. (C) Risk associations by histotype for previously reported EOC risk regions including 22 regions for which the association signal replicates in one or more histotypes at p < 5 × 10−8 and 11 risk regions that do not replicate at genome-wide significance.
Figure 2
Figure 2
Regional plots show primary and secondary risk association signals for different histotypes at the 8q24.1 and 3q31.1 risk loci SNPs are colored by histotype with light points representing p values from primary (unadjusted) analyses and dark points representing p values from CCVs. (A) At the 8q24.21 risk locus we identified two independent risk signals for HGSOC (dark red points), two independent risk signals for NMOC (dark blue points), and one signal for MOC (dark orange points at 128,087,904). p values from unadjusted association analyses are plotted beneath CCVs in light red, blue, and orange for HGSOC, NMOC, and MOC, respectively. (B) At the 2q31.1 risk locus, primary signals for the HGSOC, MOC, and NMOC histotypes were co-localized to the same region with evidence for a secondary signal for MOC located approximately 500 kb distal to the primary signal for the same histotype.
Figure 3
Figure 3
Estimates of SNP-heritability (hg2) and enrichment in regulatory features (A) Overall SNP-heritability estimates for each EOC histotype. The error bars represent 95% confidence intervals. (B) Enrichment of 24 functional annotations for NMOC and HGSOC risk loci calculated as the proportion of estimated SNP-heritability explained by the proportion of SNPs in each of several functional categories. Statistically significant annotations (p < 0.05) are shown in orange. (C) Enrichment analyses for CCVs by EOC histotype (HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian cancer; CCOC, clear-cell ovarian cancer; MOC, mucinous ovarian cancer; FT, fallopian tube epithelial cells; OSE, ovarian surface epithelial cells; and EEC, endometriosis epithelial cells). Enriched histotype-specific chromatin states are shown in red; depleted chromatin states are shown in blue; density of the color indicates strength of enrichment/depletion; size of the circle indicates the probability of enrichment, circles outlined met significance (probability > 0.98).
Figure 4
Figure 4
Looping interactions between candidate genes, CCVs, and REs at the 2q31.1 locus (A) Locus plot of 2q31.1 showing the integration of genetic fine mapping data (NMOC CCVs in purple, MOC CCVs in pink) with chromatin state calls by cell/tissue type. The profiles of cis-interactions in the fallopian tube cell line FT33 and HGSOC cell line Kuramochi were very similar. A heatmap shows the CCV/gene scores associated with each gene in the region. The greater the intensity the stronger the evidence of the interaction. This is summarized across CCVs separately for each histotype to the right of the heatmap. (B) The gray box zooms into a region of strongest interaction between HOXD-AS2 and two CCVs associated with NMOC risk about 500 kb distal to the gene. A cluster of NMOC CCVs are located in an active enhancer/promoter region of HAGLROS in both FT33 and Kuramochi cells. Kuramochi cells exhibit looping between the CCV rs6755766 (chr2:177,043,205) within a Remap ChIP-seq RUNX2 peak that breaks a RUNX2 motif. (C) Highlights this motif disruption.
Figure 5
Figure 5
Looping interactions between candidate genes, CCVs, and REs at the 8q24.1 risk locus (A) Locus plot of 8q24.1 showing the integration of genetic fine mapping data (HGSOC CCVs in red, NMOC CCVs in green) with chromatin state calls by cell/tissue type, and cis-interaction analysis in the fallopian tube cell line FT33 and HGSOC cell line Kuramochi. A heatmap shows the CCV/gene scores associated with each gene in the region. The greater the intensity, the stronger the evidence of and interaction. This is summarized across CCVs separately for each histotype to the right of the heatmap. (B and C) Zoom in on the two regions highlighted: (B) highlights chromatin state calls in around the MYC gene, which shows greatest interaction with HGSOC SNPs located in region C. Epigenomic profiling indicate activation of the MYC promoter in both FT33 and Kuramochi cell lines. HiChIP identifies a strong interaction with a single HGSOC CCV that disrupts a Tead3/4 TF motif in a remap PAX8-TEAD3/4 ChIPseq co-binding site (see black bars in top tracks) in (C), implicating a biological connection between MYC and PAX8/TEAD3/4. Consistent with this, knock down of PAX8 (siPAX8) in HGSOC cells resulted in a reduction in MYC expression compared to two controls (siNT1 and siNT2) (error bars show standard error) (B).

Comment in

References

    1. Song H., Cicek M.S., Dicks E., Harrington P., Ramus S.J., Cunningham J.M., Fridley B.L., Tyrer J.P., Alsop J., Jimenez-Linan M., et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum. Mol. Genet. 2014;23:4703–4709. - PMC - PubMed
    1. Ramus S.J., Song H., Dicks E., Tyrer J.P., Rosenthal A.N., Intermaggio M.P., Fraser L., Gentry-Maharaj A., Hayward J., Philpott S., et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J. Natl. Cancer Inst. 2015;107 - PMC - PubMed
    1. Song H., Dicks E., Ramus S.J., Tyrer J.P., Intermaggio M.P., Hayward J., Edlund C.K., Conti D., Harrington P., Fraser L., et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J. Clin. Oncol. 2015;33:2901–2907. - PMC - PubMed
    1. Vang R., Shih I.-M., Kurman R.J. Fallopian tube precursors of ovarian low- and high-grade serous neoplasms. Histopathology. 2013;62:44–58. - PubMed
    1. Gounaris I., Brenton J.D. Molecular pathogenesis of ovarian clear cell carcinoma. Future Oncol. 2015;11:1389–1405. - PubMed

Publication types