[A look into the neighboring discipline: eHealth in oncology]
- PMID: 38727743
- DOI: 10.1007/s00104-024-02089-8
[A look into the neighboring discipline: eHealth in oncology]
Abstract
Digitalization is dramatically changing the entire healthcare system. Keywords such as artificial intelligence, electronic patient files (ePA), electronic prescriptions (eRp), telemedicine, wearables, augmented reality and digital health applications (DiGA) represent the digital transformation that is already taking place. Digital becomes real! This article outlines the state of research and development, current plans and ongoing uses of digital tools in oncology in the first half of 2024. The possibilities for using artificial intelligence and the use of DiGAs in oncology are presented in more detail in this overview according to their stage of development as they already show a noticeable benefit in oncology.
Die Digitalisierung verändert das gesamte Gesundheitssystem dramatisch. Schlagworte wie künstliche Intelligenz, elektronische Patientenakte (ePA), elektronisches Rezept (eRp), Telemedizin, Wearables, Augmented Reality oder digitale Gesundheitsanwendungen (DiGA) stehen für die bereits stattfindende digitale Transformation. Digital wird real! Der folgende Überblick skizziert den Stand der Forschung und Entwicklung, aktuelle Planungen und bereits laufende Nutzungen digitaler Tools in der Onkologie in der ersten Hälfte des Jahres 2024. Die Möglichkeiten der Nutzung von künstlicher Intelligenz und der Einsatz von DiGAs in der Onkologie werden in dieser Übersicht entsprechend ihrem Entwicklungsstand etwas ausführlicher dargestellt, da sie in der Onkologie bereits einen erkennbaren Nutzen zeigen.
Keywords: Artificial intelligence; Digital health applications; Digital tools; Digital transformation; Telemedicine.
© 2024. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
References
Literatur
-
- Cellina M et al (2022) Artificial intelligence in lung cancer imaging: unfolding the future. Diagnostics 12(11):2644. https://doi.org/10.3390/diagnostics12112644 - DOI - PubMed - PMC
-
- Esteva A, Kuprel B, Novoa R et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056 - DOI - PubMed - PMC
-
- Chen S et al (2023) Deep learning-based pathology signature could reveal lymph node status and act as a novel prognostic marker across multiple cancer types. Br J Cancer 129(1):46–53. https://doi.org/10.1038/s41416-023-02262-6 - DOI - PubMed - PMC
-
- Bulten W, Kartasalo K, Chen P‑HC et al (2022) Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat Med 28:154–163. https://doi.org/10.1038/s41591-021-01620-2 - DOI - PubMed - PMC
-
- Nam JG et al (2023) AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. https://doi.org/10.1148/radiol.221894 - DOI - PubMed - PMC
Publication types
MeSH terms
LinkOut - more resources
Medical
Research Materials