Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Feb 12;24(4):903-10.
doi: 10.1021/bi00325a014.

Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group

Comparative Study

Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group

W S Faraci et al. Biochemistry. .

Abstract

The hydrolysis of cephalosporins containing good leaving groups at the 3'-position [those used in this study were the chromogenic cephalosporin PADAC [pyridine-2-azo-4'-(N',N'-dimethylaniline) substituted on cephalosporin], cephaloridine, and cephalothin], catalyzed by the Staphylococcus aureus PC1 beta-lactamase, proceeds in two spectrophotometrically observable phases. The first involves formation of an acyl-enzyme intermediate while the second involves partitioning of this intermediate between two pathways. One path yields the normal cephalosporoate (3) from which the 3'-leaving group is spontaneously eliminated in solution to give the 3-methylenedihydrothiazine 2, while the second involves initial elimination of the 3' substituent, thus yielding a second acyl-enzyme intermediate, which then hydrolyzes to give the same final product as from the first pathway. The second acyl-enzyme is relatively inert to hydrolysis (t1/2 congruent to 10 min at 20 degrees C), and its formation thus leads to transient inhibition of the enzyme. The partition ratio between hydrolysis and elimination at the enzyme active site could be determined either spectrophotometrically from burst experiments or from measurements of residual beta-lactamase activity as a function of cephalosporin concentration. This ratio varied with the leaving group ability of the 3' substituent (acetoxy greater than N,N-dimethylaniline-4-azo-2'-pyridinium greater than pyridinium) in the anticipated fashion. The inert acyl-enzyme intermediate was isolated by exclusion chromatography and shown to contain the cephem nucleus, but not the 3' substituent, covalently bound to the enzyme. As would be expected, PADAC, cephaloridine, and cephalothin yielded the same inert intermediate. Cephalosporins with poor or no 3'-leaving groups, e.g., dansylcephalothin and desacetoxycephalothin, neither displayed the branched pathway nor yielded the long-lived acyl-enzyme.

PubMed Disclaimer

Publication types

LinkOut - more resources